Submitted:
13 May 2023
Posted:
15 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Definitions and Preliminaries
2.1. Legendre wavelet and its properties
2.2. Function approaches
2.3. Generalized Legendre Wavelet Expansion [25]
3.1. Generalized Legendre Wavelet Operational Matrix of Integration
3.2. Convergence criteria of the proposed (GLWM)
4. Numerical test and discussion
5. Conclusion
6. Statements and Declarations
- Competing Interests: The authors declare that they have no competing interests.
- Authors' contributions: These authors contributed equally to this work.
- Ethics approval: This article does not contain any studies with human participants or animals performed by any of the authors.
- Availability of supporting data: The datasets used or analyzed during the current study available from the corresponding author on reasonable request.
References
- Razzaghi, M.; Yousefi, S. Legendre wavelets direct method for variational problems. Math. Comput. Simul. 2000, 53, 185–192. [Google Scholar] [CrossRef]
- Hwang, C.; Shih, Y.P. Laguerre series direct method for variational problems. J. Optim. Theory Appl. 1983, 39, 143–149. [Google Scholar] [CrossRef]
- Razzaghi, M.; Yousefi, S. The Legendre wavelets operational matrix of integration. Int. J. Syst. Sci. 2001, 32, 495–502. [Google Scholar] [CrossRef]
- Maleknejad, K.; Tavassoli Kajani, M.; Mahmoudi, Y. Numerical solution of linear Fredholm and Volterra integral equation of the second kind by using Legendre wavelets. Kybernetes 2003, 32, 1530–1539. [Google Scholar] [CrossRef]
- Morlet, J.; Arens, G.; Fourgeau, E.; Glard, D. Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media. Geophysics 1982, 47, 203–221. [Google Scholar] [CrossRef]
- LDebnath, F.A. Shah, Wavelet transforms and their applications, Boston, Birkhäuser, (2002).
- DeVore, R.A. Nonlinear approximation. Acta Numer. 1998, 7, 51–150. [Google Scholar] [CrossRef]
- Meyer, Y. Wavelets: their past and their future. Prog. Wavelet Anal. Appl. 1993, 11, 9–18. [Google Scholar]
- Chen, C.; Hsiao, C. A walsh series direct method for solving variational problems. J. Frankl. Inst. 1975, 300, 265–280. [Google Scholar] [CrossRef]
- Cheng, C.F.; Tsay, Y.T.; Wu, T.T. Walsh operational matrices for fractional calculus and their application to distributed systems. J. Frankl. Inst. 1977, 303, 267–284. [Google Scholar] [CrossRef]
- Hwang, C.; Shih, Y.-P. Solution of integral equations via Laguerre polynomials. Comput. Electr. Eng. 1982, 9, 123–129. [Google Scholar] [CrossRef]
- Chang, R.Y.; Wang, M.L. Shifted Legendre direct method for variational problems. J. Optim. Theory Appl. 1983, 39, 299–307. [Google Scholar] [CrossRef]
- Horng, I.-R.; Chou, J.-H. Shifted Chebyshev direct method for solving variational problems. Int. J. Syst. Sci. 1985, 16, 855–861. [Google Scholar] [CrossRef]
- Babolian, E.; Fattahzadeh, F. Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration. Appl. Math. Comput. 2007, 188, 417–426. [Google Scholar] [CrossRef]
- Razzaghi, M. Fourier series direct method for variational problems. Int. J. Control. 1988, 48, 887–895. [Google Scholar] [CrossRef]
- Paraskevopoulos, P.; Sklavounos, P.; Georgiou, G. The operational matrix of integration for Bessel functions. J. Frankl. Inst. 1990, 327, 329–341. [Google Scholar] [CrossRef]
- Guf, J.S.; Jiang, W.S. The Haar wavelets operational matrix of integration. Int. J. Syst. Sci. 1996, 27, 623–628. [Google Scholar] [CrossRef]
- Chen, C.; Hsiao, C. Haar wavelet method for solving lumped and distributed-parameter systems. Iee Proc. - Control. Theory Appl. 1997, 144, 87–94. [Google Scholar] [CrossRef]
- Lal, S.; Kumar, S. Best wavelet approximation of functions belonging to generalized Lipschitz class using Haar scaling function. Thai J. Math. 2017, 15, 409–419. [Google Scholar]
- Lepik, Ü. Numerical solution of differential equations using Haar wavelets. Math. Comput. Simul. 2005, 68, 127–143. [Google Scholar] [CrossRef]
- Lepik, Ü. 2007, March. Application of the Haar wavelet transform to solving integral and differential equations. In Proceedings of the Estonian Academy of Sciences, Physics, Mathematics (Vol. 56, No. 1).
- Jhangeer, A.; Hussain, A.; Junaid-U-Rehman, M.; Khan, I.; Baleanu, D.; Nisar, K.S. Lie analysis, conservation laws and travelling wave structures of nonlinear Bogoyavlenskii–Kadomtsev–Petviashvili equation. Results Phys. 2020, 19, 103492. [Google Scholar] [CrossRef]
- Kajani, M.T.; Vencheh, A.H.; Ghasemi, M. The Chebyshev wavelets operational matrix of integration and product operation matrix. Int. J. Comput. Math. 2009, 86, 1118–1125. [Google Scholar] [CrossRef]
- Sripathy, B.; Vijayaraju, P.; Hariharan, G. Chebyshev wavelet based approximation method to some non-linear differential equations arising in engineering. Int. J. Math. Anal. 2015, 9, 993–1010. [Google Scholar] [CrossRef]
- Lal, S. Generalized legendre wavelet method and its applications in approximation of functions of bounded derivatives. Palest. J. Math. 2019, 8, 373–389. [Google Scholar]
- Ahmad, O.; Sheikh, N.A.; Nisar, K.S.; Shah, F.A. Biorthogonal wavelets on the spectrum. Math. Methods Appl. Sci. 2020, 44, 4479–4490. [Google Scholar] [CrossRef]
- Sharma, V.K.; Lal, S. Solution of Differential Equations by Using Legendre Wavelet Operational Matrix of Integration. Int. J. Appl. Comput. Math. 2022, 8, 1–21. [Google Scholar] [CrossRef]
- Balaji, S. Legendre wavelet operational matrix method for solution of fractional order Riccati differential equation. J. Egypt. Math. Soc. 2015, 23, 263–270. [Google Scholar] [CrossRef]
- P. V. O’Neil, Advanced Engineering Mathematics, Belmont, California, Wadswort, (1987).


| t | Exact Sol. | Generalized Legendre wavelets (proposed method) for |
Regular Legendre wavelets [27] for M=3 and k=3 |
||
|---|---|---|---|---|---|
| Approximate Sol. | Absolute Error | Approximate Sol. | Absolute Error | ||
| 0.1 0.2 0.3 0.4 0.5 0.6 |
0.01758 0.06233 0.12529 0.20047 0.28383 0.37268 |
0.017559 0.062345 0.1253 0.20048 0.28384 0.37268 |
2.1156e-05 1.253e-05 2.6631e-06 1.0317e-05 2.6723e-06 1.5045e-06 |
0.01787 0.06191 0.12548 0.20032 0.28365 0.37271 |
2.9000e-04 4.2000e-04 1.9000e-04 1.5000e-04 1.8000e-04 3.0000e-05 |
| t | Exact Sol. | Generalized Legendre wavelets (proposed method) for |
Regular Legendre wavelets [27] for M=4 and k=3 |
||
|---|---|---|---|---|---|
| Approximate Sol. | Absolute Error | Approximate Sol. | Absolute Error | ||
| 0.1 0.2 0.3 0.4 0.5 0.6 |
0.01758 0.06233 0.12529 0.20047 0.28383 0.37268 |
0.017559 0.062345 0.1253 0.20048 0.28384 0.37268 |
2.1156e-05 1.253e-05 2.6631e-06 1.0317e-05 2.6723e-06 1.5045e-06 |
0.01787 0.06191 0.12548 0.20032 0.28365 0.37271 |
2.9000e-04 4.2000e-04 1.9000e-04 1.5000e-04 1.8000e-04 3.0000e-05 |
| T | Exact Solution | (proposed method) for |
Regular Legendre wavelets for |
||||
|---|---|---|---|---|---|---|---|
| Appr. Sol | Absolute Error | Appr. Sol [3] |
Absolute Error | Appr. Sol |
Absolute Error | ||
| 0.0 0.1 0.2 0.3 0.4 0.5 0.6 |
0 0.3297 0.5507 0.6988 0.7981 0.8647 0.9093 |
0.0002416 0.3298 0.5506 0.6988 0.7981 0.8647 0.9093 |
0.0002416 8.462e-5 5.012e-5 1.065e-5 4.127e-5 1.069e-5 6.018e-6 |
0.0002 0.3284 0.5523 0.6980 0.7987 0.8653 0.9091 |
2.0e-4 0.00128 0.00163 8.06e-4 5.97e-4 6.35e-4 1.82e-4 |
0.0051813 0.3285 0.55233 0.69808 0.79872 0.86537 0.90912 |
5.1813e-03 1.1825e-03 1.6606e-03 7.3067e-04 6.1326e-04 7.0400e-04 1.5817e-04 |
| T | (proposed method) for |
Legendre wavelets for |
Chebyshev wavelets Method [14] |
|||
|---|---|---|---|---|---|---|
| Absolute Error | Absolute Error |
Absolute Error |
Absolute Error |
Absolute Error |
Absolute Error |
|
| 0.0 0.1 0.2 |
2.4160e-04 8.462e-5 5.012e-5 |
2.0e-4 1.2800e-03 1.6300e-03 |
5.1813e-03 1.1825e-03 1.6606e-03 |
1.2700e-02 1.4500e-02 3.8000e-03 |
2.1000e-03 1.3200e-03 1.7000e-03 |
0.2038e-3 0.0208e-3 0.1467e-3 |
| T | Regular Legendre wavelets for M=3 and k=3 [14] | ||||
|---|---|---|---|---|---|
| Appr. Solution | Absolute Error | Appr. solution | Absolute Error | ||
| 0.1 0.2 0.3 0.4 0.5 0.6 |
0.997502 0.990025 0.977626 0.960398 0.93847 0.912005 |
0.997501 0.990025 0.977626 0.960398 0.93847 0.912005 |
2.6760e-07 4.8122e-08 1.0624e-07 8.9834e-08 7.0354e-08 4.3358e-08 |
0.997502 0.990024 0.977625 0.960396 0.938468 0.912004 | 4.3793e-07 9.7224e-07 1.2465e-06 2.2267e-06 1.8072e-06 8.6350e-07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
