Submitted:
10 May 2023
Posted:
12 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Role of LncRNAs in lung cancer
3. LncRNAs in lung cancer therapy resistance
3.1. Role of LncRNAs in resistance to chemotherapy, radiotherapy, and targeted therapy in lung cancer
3.2. Role of LncRNAs in immunotherapy responses in lung cancer
4. LncRNAs as biomarkers in NSCLC
5. LncRNAs as therapeutic targets
6. Conclusions/Perspectives
Acknowledgments
Conflicts of Interest
References
- Kung, J.T., D. Colognori, and J.T. Lee, Long noncoding RNAs: past, present, and future. Genetics, 2013. 193(3): p. 651-69. [CrossRef]
- Yao, R.W., Y. Wang, and L.L. Chen, Cellular functions of long noncoding RNAs. Nat Cell Biol, 2019. 21(5): p. 542-551. [CrossRef]
- Guo, C.J., G. Xu, and L.L. Chen, Mechanisms of Long Noncoding RNA Nuclear Retention. Trends Biochem Sci, 2020. 45(11): p. 947-960. [CrossRef]
- Chen, B., et al., Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther, 2022. 7(1): p. 121. [CrossRef]
- Long, Y., et al., How do lncRNAs regulate transcription? Sci Adv, 2017. 3(9): p. eaao2110.
- Wang, W., et al., Biological Function of Long Non-coding RNA (LncRNA) Xist. Front Cell Dev Biol, 2021. 9: p. 645647. [CrossRef]
- Monnier, P., et al., H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. Proc Natl Acad Sci U S A, 2013. 110(51): p. 20693-8. [CrossRef]
- Ripoche, M.A., et al., Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev, 1997. 11(12): p. 1596-604. [CrossRef]
- Rinn, J.L., et al., Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 2007. 129(7): p. 1311-23. [CrossRef]
- Li, L., et al., Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep, 2013. 5(1): p. 3-12. [CrossRef]
- Amandio, A.R., et al., Hotair Is Dispensible for Mouse Development. PLoS Genet, 2016. 12(12): p. e1006232. [CrossRef]
- Sauvageau, M., et al., Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife, 2013. 2: p. e01749. [CrossRef]
- Cronin, K.A., et al., Annual Report to the Nation on the Status of Cancer, part I: National cancer statistics. Cancer, 2018. 124(13): p. 2785-2800. [CrossRef]
- Sabnis, A.J. and T.G. Bivona, Principles of Resistance to Targeted Cancer Therapy: Lessons from Basic and Translational Cancer Biology. Trends Mol Med, 2019. 25(3): p. 185-197. [CrossRef]
- Zhang, X.Z., H. Liu, and S.R. Chen, Mechanisms of Long Non-Coding RNAs in Cancers and Their Dynamic Regulations. Cancers (Basel), 2020. 12(5). [CrossRef]
- Shen, S., et al., Large-scale integration of the non-coding RNAs with DNA methylation in human cancers. Cell Rep, 2023. 42(3): p. 112261. [CrossRef]
- Aprile, M., et al., LncRNAs in Cancer: From garbage to Junk. Cancers (Basel), 2020. 12(11). [CrossRef]
- Tong, G., et al., MALAT1 Polymorphisms and Lung Cancer Susceptibility in a Chinese Northeast Han Population. Int J Med Sci, 2022. 19(8): p. 1300-1306.
- Ren, M.M., et al., Roles of HOTAIR in lung cancer susceptibility and prognosis. Mol Genet Genomic Med, 2020. 8(7): p. e1299. [CrossRef]
- Ji, P., et al., MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 2003. 22(39): p. 8031-41.
- Sun, Y. and L. Ma, New Insights into Long Non-Coding RNA MALAT1 in Cancer and Metastasis. Cancers (Basel), 2019. 11(2). [CrossRef]
- Hou, J., et al., Functions and mechanisms of lncRNA MALAT1 in cancer chemotherapy resistance. Biomark Res, 2023. 11(1): p. 23.
- Jiang, L., Z. Li, and R. Wang, Long non-coding RNAs in lung cancer: Regulation patterns, biologic function and diagnosis implications (Review). Int J Oncol, 2019. 55(3): p. 585-596.
- Zhang, B., et al., The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep, 2012. 2(1): p. 111-23. [CrossRef]
- Eissmann, M., et al., Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol, 2012. 9(8): p. 1076-87.
- Nakagawa, S., et al., Malat1 is not an essential component of nuclear speckles in mice. RNA, 2012. 18(8): p. 1487-99. [CrossRef]
- Gutschner, T., et al., The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res, 2013. 73(3): p. 1180-9.
- Kim, J., et al., Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat Genet, 2018. 50(12): p. 1705-1715. [CrossRef]
- Anderson, K.M., et al., Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature, 2016. 539(7629): p. 433-436.
- Engreitz, J.M., et al., Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature, 2016. 539(7629): p. 452-455. [CrossRef]
- Cho, S.W., et al., Promoter of lncRNA Gene PVT1 Is a Tumor-Suppressor DNA Boundary Element. Cell, 2018. 173(6): p. 1398-1412 e22. [CrossRef]
- Nunez-Martinez, H.N. and F. Recillas-Targa, Emerging Functions of lncRNA Loci beyond the Transcript Itself. Int J Mol Sci, 2022. 23(11).
- Schneider, C., R.M. King, and L. Philipson, Genes specifically expressed at growth arrest of mammalian cells. Cell, 1988. 54(6): p. 787-93. [CrossRef]
- Li, M., et al., GAS5 protects against osteoporosis by targeting UPF1/SMAD7 axis in osteoblast differentiation. Elife, 2020. 9.
- Dong, S., et al., The long non-coding RNA, GAS5, enhances gefitinib-induced cell death in innate EGFR tyrosine kinase inhibitor-resistant lung adenocarcinoma cells with wide-type EGFR via downregulation of the IGF-1R expression. J Hematol Oncol, 2015. 8: p. 43. [CrossRef]
- Mei, Y., et al., Long Noncoding RNA GAS5 Suppresses Tumorigenesis by Inhibiting miR-23a Expression in Non-Small Cell Lung Cancer. Oncol Res, 2017. 25(6): p. 1027-1037.
- Guo, C., et al., LncRNA-GAS5 induces PTEN expression through inhibiting miR-103 in endometrial cancer cells. J Biomed Sci, 2015. 22: p. 100.
- Sang, L., et al., Mitochondrial long non-coding RNA GAS5 tunes TCA metabolism in response to nutrient stress. Nat Metab, 2021. 3(1): p. 90-106. [CrossRef]
- Ye, R., et al., New insights into long non-coding RNAs in non-small cell lung cancer. Biomed Pharmacother, 2020. 131: p. 110775.
- Thai, P., et al., Characterization of a novel long noncoding RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer cell lines. Am J Respir Cell Mol Biol, 2013. 49(2): p. 204-11. [CrossRef]
- Xing, C., et al., Role of lncRNA LUCAT1 in cancer. Biomed Pharmacother, 2021. 134: p. 111158. [CrossRef]
- Sun, Y., et al., Long non-coding RNA LUCAT1 is associated with poor prognosis in human non-small lung cancer and regulates cell proliferation via epigenetically repressing p21 and p57 expression. Oncotarget, 2017. 8(17): p. 28297-28311. [CrossRef]
- Agarwal, S., et al., The long non-coding RNA LUCAT1 is a negative feedback regulator of interferon responses in humans. Nat Commun, 2020. 11(1): p. 6348.
- Mahpour, A. and A.C. Mullen, Our emerging understanding of the roles of long non-coding RNAs in normal liver function, disease, and malignancy. JHEP Rep, 2021. 3(1): p. 100177.
- Zhu, C., et al., Functions and underlying mechanisms of lncRNA HOTAIR in cancer chemotherapy resistance. Cell Death Discov, 2022. 8(1): p. 383. [CrossRef]
- Liu, X.H., et al., The long non-coding RNA HOTAIR indicates a poor prognosis and promotes metastasis in non-small cell lung cancer. BMC Cancer, 2013. 13: p. 464. [CrossRef]
- Liu, M.Y., et al., Elevated HOTAIR expression associated with cisplatin resistance in non-small cell lung cancer patients. J Thorac Dis, 2016. 8(11): p. 3314-3322. [CrossRef]
- Zhou, C., et al., Long noncoding RNA HOTAIR, a hypoxia-inducible factor-1alpha activated driver of malignancy, enhances hypoxic cancer cell proliferation, migration, and invasion in non-small cell lung cancer. Tumour Biol, 2015. 36(12): p. 9179-88.
- Ma, Q., et al., Inducible lncRNA transgenic mice reveal continual role of HOTAIR in promoting breast cancer metastasis. Elife, 2022. 11.
- Esposito, R., et al., Multi-hallmark long noncoding RNA maps reveal non-small cell lung cancer vulnerabilities. Cell Genom, 2022. 2(9): p. 100171. [CrossRef]
- Pacholewska, A. and M.H. Sung, lncRNA expression predicts mRNA abundance. Epigenomics, 2019. 11(10): p. 1121-1128.
- Yang, M., et al., lncRNAfunc: a knowledgebase of lncRNA function in human cancer. Nucleic Acids Res, 2022. 50(D1): p. D1295-D1306. [CrossRef]
- Mondal, P. and S.M. Meeran, Emerging role of non-coding RNAs in resistance to platinum-based anti-cancer agents in lung cancer. Front Pharmacol, 2023. 14: p. 1105484. [CrossRef]
- Wang, W.T., et al., Noncoding RNAs in cancer therapy resistance and targeted drug development. J Hematol Oncol, 2019. 12(1): p. 55.
- Xie, Y., et al., LncRNAs as biomarkers for predicting radioresistance and survival in cancer: a meta-analysis. Sci Rep, 2022. 12(1): p. 18494. [CrossRef]
- Fang, Z., et al., LncRNA-MALAT1 contributes to the cisplatin-resistance of lung cancer by upregulating MRP1 and MDR1 via STAT3 activation. Biomed Pharmacother, 2018. 101: p. 536-542.
- Wang, R., X. Lu, and R. Yu, lncRNA MALAT1 Promotes EMT Process and Cisplatin Resistance of Oral Squamous Cell Carcinoma via PI3K/AKT/m-TOR Signal Pathway. Onco Targets Ther, 2020. 13: p. 4049-4061. [CrossRef]
- Li, Z., et al., Long noncoding RNA MALAT1 affects the efficacy of radiotherapy for esophageal squamous cell carcinoma by regulating Cks1 expression. J Oral Pathol Med, 2017. 46(8): p. 583-590.
- Yao, P.A., et al., The feedback loop of ANKHD1/lncRNA MALAT1/YAP1 strengthens the radioresistance of CRC by activating YAP1/AKT signaling. Cell Death Dis, 2022. 13(2): p. 103.
- Cheng, N., et al., Microarray expression profile of long non-coding RNAs in EGFR-TKIs resistance of human non-small cell lung cancer. Oncol Rep, 2015. 33(2): p. 833-9. [CrossRef]
- Wang, Z., et al., Depletion of lncRNA MALAT1 inhibited sunitinib resistance through regulating miR-362-3p-mediated G3BP1 in renal cell carcinoma. Cell Cycle, 2020. 19(16): p. 2054-2062.
- Yang, X., et al., The long intergenic noncoding RNA GAS5 reduces cisplatin-resistance in non-small cell lung cancer through the miR-217/LHPP axis. Aging (Albany NY), 2021. 13(2): p. 2864-2884.
- Lambrou, G.I., K. Hatziagapiou, and A. Zaravinos, The Non-Coding RNA GAS5 and Its Role in Tumor Therapy-Induced Resistance. Int J Mol Sci, 2020. 21(20). [CrossRef]
- Shen, Q., Z. Xu, and S. Xu, Long non-coding RNA LUCAT1 contributes to cisplatin resistance by regulating the miR-514a-3p/ULK1 axis in human non-small cell lung cancer. Int J Oncol, 2020. 57(4): p. 967-979.
- Huan, L., et al., Hypoxia induced LUCAT1/PTBP1 axis modulates cancer cell viability and chemotherapy response. Mol Cancer, 2020. 19(1): p. 11.
- Vierbuchen, T., et al., The lncRNA LUCAT1 is elevated in inflammatory disease and restrains inflammation by regulating the splicing and stability of NR4A2. Proc Natl Acad Sci U S A, 2023. 120(1): p. e2213715120. [CrossRef]
- Jing, L., et al., HOTAIR enhanced aggressive biological behaviors and induced radio-resistance via inhibiting p21 in cervical cancer. Tumour Biol, 2015. 36(5): p. 3611-9. [CrossRef]
- Chen, J., et al., Radiotherapy induced Lewis lung cancer cell apoptosis via inactivating beta-catenin mediated by upregulated HOTAIR. Int J Clin Exp Pathol, 2015. 8(7): p. 7878-86.
- Zhou, Y., et al., Long non-coding RNA HOTAIR enhances radioresistance in MDA-MB231 breast cancer cells. Oncol Lett, 2017. 13(3): p. 1143-1148. [CrossRef]
- Wang, Q., et al., HOTAIR induces EGFR-TKIs resistance in non-small cell lung cancer through epithelial-mesenchymal transition. Lung Cancer, 2020. 147: p. 99-105. [CrossRef]
- Liu, Y., et al., Lentivirus-mediated silencing of HOTAIR lncRNA restores gefitinib sensitivity by activating Bax/Caspase-3 and suppressing TGF-alpha/EGFR signaling in lung adenocarcinoma. Oncol Lett, 2018. 15(3): p. 2829-2838.
- Yang, Y., et al., Silencing of LncRNA-HOTAIR decreases drug resistance of Non-Small Cell Lung Cancer cells by inactivating autophagy via suppressing the phosphorylation of ULK1. Biochem Biophys Res Commun, 2018. 497(4): p. 1003-1010.
- Pan, X., C. Li, and J. Feng, The role of LncRNAs in tumor immunotherapy. Cancer Cell Int, 2023. 23(1): p. 30. [CrossRef]
- Sharma, P. and J.P. Allison, Dissecting the mechanisms of immune checkpoint therapy. Nat Rev Immunol, 2020. 20(2): p. 75-76. [CrossRef]
- Hong, L., et al., Efficacy and clinicogenomic correlates of response to immune checkpoint inhibitors alone or with chemotherapy in non-small cell lung cancer. Nat Commun, 2023. 14(1): p. 695.
- Wei, S., et al., LncRNA MALAT1 contributes to non-small cell lung cancer progression via modulating miR-200a-3p/programmed death-ligand 1 axis. Int J Immunopathol Pharmacol, 2019. 33: p. 2058738419859699. [CrossRef]
- Xia, R., et al., LINC01140 promotes the progression and tumor immune escape in lung cancer by sponging multiple microRNAs. J Immunother Cancer, 2021. 9(8). [CrossRef]
- Zhang, H., et al., Immune checkpoints related-LncRNAs can identify different subtypes of lung cancer and predict immunotherapy and prognosis. J Cancer Res Clin Oncol, 2022. 148(7): p. 1597-1612.
- Fan, T., N. Sun, and J. He, Exosome-Derived LncRNAs in Lung Cancer. Front Oncol, 2020. 10: p. 1728. [CrossRef]
- Badowski, C., B. He, and L.X. Garmire, Blood-derived lncRNAs as biomarkers for cancer diagnosis: the Good, the Bad and the Beauty. NPJ Precis Oncol, 2022. 6(1): p. 40.
- Fang, R., et al., The Evaluation of Serum Biomarkers for Non-small Cell Lung Cancer (NSCLC) Diagnosis. Front Physiol, 2018. 9: p. 1710. [CrossRef]
- Sutic, M., et al., Diagnostic, Predictive, and Prognostic Biomarkers in Non-Small Cell Lung Cancer (NSCLC) Management. J Pers Med, 2021. 11(11). [CrossRef]
- Du, L., et al., Cell-free lncRNA expression signatures in urine serve as novel non-invasive biomarkers for diagnosis and recurrence prediction of bladder cancer. J Cell Mol Med, 2018. 22(5): p. 2838-2845. [CrossRef]
- Wei, X., et al., Genome-wide analysis of long noncoding RNA expression profile in nasal mucosa with allergic rhinitis. BMC Med Genomics, 2021. 14(1): p. 100.
- Tang, Q., et al., Three circulating long non-coding RNAs act as biomarkers for predicting NSCLC. Cell Physiol Biochem, 2015. 37(3): p. 1002-9. [CrossRef]
- Hu, X., et al., The plasma lncRNA acting as fingerprint in non-small-cell lung cancer. Tumour Biol, 2016. 37(3): p. 3497-504. [CrossRef]
- Min, L., et al., Exosomal LncRNA RP5-977B1 as a novel minimally invasive biomarker for diagnosis and prognosis in non-small cell lung cancer. Int J Clin Oncol, 2022. 27(6): p. 1013-1024. [CrossRef]
- Yao, X., et al., Diagnostic value of lncRNA HOTAIR as a biomarker for detecting and staging of non-small cell lung cancer. Biomarkers, 2022. 27(6): p. 526-533. [CrossRef]
- Cao, W., et al., Multi-faceted epigenetic dysregulation of gene expression promotes esophageal squamous cell carcinoma. Nat Commun, 2020. 11(1): p. 3675. [CrossRef]
- Liang, W., et al., Circulating long noncoding RNA GAS5 is a novel biomarker for the diagnosis of nonsmall cell lung cancer. Medicine (Baltimore), 2016. 95(37): p. e4608. [CrossRef]
- Dhuri, K., et al., Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development. J Clin Med, 2020. 9(6).
- Winkle, M., et al., Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov, 2021. 20(8): p. 629-651. [CrossRef]
- Pedram Fatemi, R., et al., Screening for Small-Molecule Modulators of Long Noncoding RNA-Protein Interactions Using AlphaScreen. J Biomol Screen, 2015. 20(9): p. 1132-41. [CrossRef]
- Rakheja, I., et al., Small molecule quercetin binds MALAT1 triplex and modulates its cellular function. Mol Ther Nucleic Acids, 2022. 30: p. 241-256.
- Ren, Y., et al., Targeted design and identification of AC1NOD4Q to block activity of HOTAIR by abrogating the scaffold interaction with EZH2. Clin Epigenetics, 2019. 11(1): p. 29. [CrossRef]
- Zhen, S. and X. Li, Application of CRISPR-Cas9 for Long Noncoding RNA Genes in Cancer Research. Hum Gene Ther, 2019. 30(1): p. 3-9. [CrossRef]
- Tontonoz, P., et al., Long Noncoding RNA Facilitated Gene Therapy Reduces Atherosclerosis in a Murine Model of Familial Hypercholesterolemia. Circulation, 2017. 136(8): p. 776-778. [CrossRef]
- Hong, D.S., et al., Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer, 2020. 122(11): p. 1630-1637.
- Segal, M., et al., Hydrophobically Modified let-7b miRNA Enhances Biodistribution to NSCLC and Downregulates HMGA2 In Vivo. Mol Ther Nucleic Acids, 2020. 19: p. 267-277. [CrossRef]
- Reda El Sayed, S., et al., MicroRNA Therapeutics in Cancer: Current Advances and Challenges. Cancers (Basel), 2021. 13(11).
- Wu, D., et al., Dual genome-wide coding and lncRNA screens in neural induction of induced pluripotent stem cells. Cell Genom, 2022. 2(11). [CrossRef]
- Pan, J., et al., Long noncoding RNA MALAT1 as a candidate serological biomarker for the diagnosis of non-small cell lung cancer: A meta-analysis. Thorac Cancer, 2020. 11(2): p. 329-335.
- Wang, L., et al., Characterization of a Novel LUCAT1/miR-4316/VEGF-A Axis in Metastasis and Glycolysis of Lung Adenocarcinoma. Front Cell Dev Biol, 2022. 10: p. 833579.
- Tsai, M.C., et al., Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010. 329(5992): p. 689-93. [CrossRef]

| LncRNA | Normal function | Role in lung cancer | Role in chemotherapy | Role in radiotherapy | Role in targeted therapy |
Role in immunotherapy | Potential as biomarker |
|---|---|---|---|---|---|---|---|
| in lung cancer | |||||||
| MALAT1 | Regulation of neighboring genes expression [24,26] | Oncogene [20,27] |
Promotes resistance to cisplatin[56] | Not explored | May promote sensitivity: Down-regulated in EGFR-TKI resistant PC9 cells [60] | May be associated with therapeutic failure: correlated with PD-L1 expression [76] | Yes – higher levels in NSCLC [102] |
| GAS5 | Cell cycle inhibition[33], cell differentiation[34] | Tumor suppressor [35] |
Promotes sensitivity to cisplatin[62] | Promotes sensitivity [63] | Promotes sensitivity to EGFR TKI [35] | Not explored | Yes – lower levels in NSCLC [90] |
| LUCAT1 | Inhibition of immune responses [43,66] | Oncogene [40,42] |
Promotes resistance to cisplatin [64] | Not explored | Not explored | Not explored | Yes – higher levels in LUAD [103] |
| HOTAIR | Regulation of HOX genes expression [9,10,11] by recruitment of histone-modifier enzymes [104] | Oncogene [46,47,69] | Promotes resistance to cisplatin [47] | Promotes resistance [68] | Controversial roles: • Downregulated in EGFR-TKI resistant tumors [70] • Downregulated in EGFR-TKI resistant PC9 cells [60] • Upregulated in EGFR-TKI resistant PC9 cells [71] • Promotes resistance to Crizotinib (ALK/ROS1 inhibitor) [72] |
Not explored | Yes – higher levels in NSCLC [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
