Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Rapeseed Meal Waste Biomass as Single-Cell Protein Substrate for Nutritionally-Enhanced Feed Component

Version 1 : Received: 3 May 2023 / Approved: 5 May 2023 / Online: 5 May 2023 (03:02:04 CEST)

A peer-reviewed article of this Preprint also exists.

Dygas, D.; Liszkowska, W.; Steglińska, A.; Sulyok, M.; Kręgiel, D.; Berłowska, J. Rapeseed Meal Waste Biomass as a Single-Cell Protein Substrate for Nutritionally-Enhanced Feed Components. Processes 2023, 11, 1556. Dygas, D.; Liszkowska, W.; Steglińska, A.; Sulyok, M.; Kręgiel, D.; Berłowska, J. Rapeseed Meal Waste Biomass as a Single-Cell Protein Substrate for Nutritionally-Enhanced Feed Components. Processes 2023, 11, 1556.

Abstract

Rapeseed meal (RM) is an important agroindustrial by-product produced in large quantities by oil extraction from seeds. However, the efficient utilization of RM as animal feed is limited by its low metabolizable energy, poor palatability, and high levels of fiber and anti-nutritional components. Here, we investigate the potential of enriching RM with single-cell protein by fermentation with conventional and unconventional yeasts, to make a nutritionally improved feed component. The process of simultaneous saccharification and fermentation improved the parameters of the waste biomass, especially the protein content, the amount of crude fiber, and the degree of biotransformation of isoflavone compounds present in the waste material. Fermentation yielded the highest protein gain for the Saccharomyces cerevisiae Ethanol Red strain (ΔN=2.38%) at a biomass load of 12.5 g and for Scheffersomyces stipitis (ΔN=2.34%) at an enzyme dose of 0.125ml/10g DM. Crude fiber content (CF) was reduced by 2.55–7.18%. The SSF process resulted in the conversion of isoflavones to forms with fewer adverse effects and lower estrogenic activity.

Keywords

waste biomaterial; rapeseed meal; SCP; feed; component; valorization; protein; crude fiber

Subject

Biology and Life Sciences, Food Science and Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.