Submitted:
02 May 2023
Posted:
04 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Domain
2.2. WRF Model
2.3. Data Used
NCEP-FNL
ERA5
2.3.1. Satellite Datasets
INSAT-3D
ISS-LIS
2.4. Methodology
2.4.1. REGRID
2.4.2. BOX SELECTION
2.4.3. TIME SERIES
2.4.4. MODEL SKILL SCORE
2.4.5. THUNDERSTORM INDICES
2.4.6. OPTIMAL THRESHOLD
3. Results and Discussions
3.1. Verification of model simulated thunderstorm indices with ERA-5
3.1.1. Assessment of thunderstorm indices over Udaipur, Rajasthan
| WRF | ERA-5 | |||||||
|---|---|---|---|---|---|---|---|---|
| Index | Max | Min | Mean | Std | Max | Min | Mean | Std |
| CAPE | 3761.99 | 1.56 | 1544.88 | 601.74 | 4070.24 | 0 | 1297.55 | 631.77 |
| KI | 45.91 | -6.34 | 22.14 | 12.19 | 42.67 | 2.09 | 23.82 | 9.03 |
| CT | 25.92 | -5.43 | 16.08 | 6.21 | 26.33 | 12.55 | 20.05 | 2.94 |
| VT | 36 | 22.27 | 29.99 | 2.3 | 34.62 | 23.57 | 29.12 | 1.91 |
| TTI | 58.35 | 27.03 | 46.07 | 5.33 | 55.18 | 32.44 | 47.33 | 4.54 |
| DEW | 27.25 | 9.56 | 22.85 | 3.19 | 28.91 | 13.64 | 22.57 | 2.3 |
| POT | -36.71 | -72.93 | -52.55 | 7.2 | -34.89 | -71.82 | -54 | 7.29 |
| EHI | 5.27 | -1.48 | 0.56 | 0.61 | 4.09 | -0.81 | 0.38 | 0.45 |
| SCP | 17.66 | -3.84 | 1.1 | 1.49 | 8.98 | -2.37 | 0.92 | 1.31 |
| STP | 1.53 | -1.37 | 0 | 0.16 | 1.57 | -1.31 | 0 | 0.14 |
| SRH | 287.88 | -96.78 | 56.02 | 51.41 | 2.38 | -72.67 | 46.85 | 43.64 |
| DLS | 29.96 | 0.54 | 13.52 | 6.18 | 25.71 | 0.02 | 11.59 | 6.29 |
| LLS | 13.38 | 0.14 | 2.86 | 1.8 | 9.77 | 0 | 2.35 | 1.8 |
| PLCL | 996.32 | 660.25 | 895.29 | 82.5 | 979.23 | 687.37 | 885.61 | 61.45 |
| WRF | ERA-5 | |||||||
|---|---|---|---|---|---|---|---|---|
| Index | Max | Min | Mean | Std | Max | Min | Mean | Std |
| CAPE | 2561.5 | 0 | 847.39 | 441.71 | 3879.77 | 0 | 617.91 | 527.89 |
| KI | 45.84 | 27.51 | 39.77 | 2.13 | 45.47 | 2.29 | 37.15 | 1.75 |
| CT | 22.05 | 11.38 | 18.75 | 1.6 | 24.8 | 12.36 | 19.85 | 1.01 |
| VT | 36.78 | 18.95 | 24.19 | 35.49 | 18.35 | 23.69 | 2.36 | |
| TTI | 51.96 | 35.43 | 42.94 | 2.17 | 50.35 | 22.28 | 42.35 | 2.45 |
| DEW | 27.32 | -1.97 | 22.37 | 2.86 | 33.85 | 16.61 | 25.06 | 2.05 |
| POT | -35.72 | -63.31 | -52.75 | 4.24 | -28.96 | -70.35 | -51.74 | 4.64 |
| EHI | 3.18 | -0.46 | 0.32 | 0.32 | 3.46 | -0.22 | 0.2 | 0.24 |
| SCP | 5.37 | -0.43 | 0.39 | 0.49 | 4.97 | -0.4 | 0.31 | 0.45 |
| STP | 0.5 | -0.25 | 0 | 0.04 | 0.74 | -0.28 | 0.01 | 0.04 |
| SRH 3 | 321.4 | -59.87 | 62.01 | 50.41 | 269.58 | -42.74 | 52.44 | 41.35 |
| DLS | 22.68 | 0.2 | 8.59 | 4.44 | 23.64 | 0.02 | 8.17 | 4.17 |
| LLS | 15.39 | 0.03 | 3.22 | 2.64 | 12.42 | 0 | 3.35 | 2.52 |
| PLCL | 992.95 | 531.74 | 843.04 | 84.7 | 992.62 | 515.65 | 85.05 | 67.48 |
| WRF | ERA-5 | |||||||
|---|---|---|---|---|---|---|---|---|
| Index | Max | Min | Mean | Std | Max | Min | Mean | Std |
| CAPE | 5624.77 | 0 | 1680.3 | 1572.65 | 6995.75 | 0 | 1359.22 | 1185.97 |
| KI | 44.03 | 19.81 | 37.62 | 3.62 | 43.49 | -20.29 | 34.5 | 5.68 |
| CT | 23.27 | 10.94 | 18.04 | 1.89 | 24.09 | 12.88 | 19.31 | 1.48 |
| VT | 33.18 | 19.44 | 26.67 | 2.59 | 31.09 | 18.51 | 24.99 | 1.99 |
| TTI | 50.78 | 36.67 | 44.71 | 2.32 | 50.32 | 14.69 | 43.86 | 3.26 |
| DEW | 29.01 | 0.47 | 22.56 | 4.6 | 30.04 | 16.81 | 24.9 | 1.64 |
| POT | -38.8 | -61.51 | -49.77 | 3.46 | -28.89 | -66.6 | -49.44 | 5.28 |
| EHI | 9.38 | -0.85 | 1.41 | 1.48 | 6.69 | -0.79 | 0.83 | 0.96 |
| SCP | 26.17 | -0.44 | 1.89 | 2.37 | 19.05 | -0.35 | 1.36 | 1.78 |
| STP | 2.94 | -0.31 | 0.17 | 0.26 | 2.56 | -0.15 | 0.15 | 0.23 |
| SRH 3 | 615 | -82.77 | 100.78 | 73.24 | 419.23 | -45.71 | 93.08 | 63.64 |
| DLS | 22.578 | 0.59 | 9.77 | 4.02 | 20.01 | 0 | 8.77 | 3.49 |
| LLS | 18.62 | 0.02 | 4.86 | 3.09 | 16.19 | 0 | 4.75 | 3.08 |
| PLCL | 998.4 | 592.98 | 872.07 | 98.18 | 998.43 | 523.44 | 905.6 | 72.07 |
| WRF | ERA-5 | |||||||
|---|---|---|---|---|---|---|---|---|
| Index | Max | Min | Mean | Std | Max | Min | Mean | Std |
| CAPE | 3939.28 | 0 | 1659.65 | 730.49 | 4169.33 | 0 | 1215.75 | 612.81 |
| KI | 43 | 23.88 | 34.37 | 3.94 | 41.99 | 23 | 34.08 | 2.96 |
| CT | 22.7 | 13.92 | 19.22 | 1.38 | 23.1 | 14.88 | 19.08 | 1.36 |
| VT | 26.9 | 20 | 23.36 | 1.01 | 25.8 | 19.84 | 23.18 | 0.96 |
| TTI | 46.94 | 37.46 | 42.59 | 1.63 | 46.62 | 37.02 | 42.04 | 1.52 |
| DEW | 27.58 | 18.18 | 24.85 | 1.89 | 30.19 | 18.65 | 25.48 | 1.16 |
| POT | -40.25 | -62.36 | -50.77 | 4.81 | -36.69 | -60.33 | -49.47 | 4.22 |
| EHI | 3.18 | -0.82 | 0.33 | 0.39 | 2.71 | -0.86 | 0.18 | 0.28 |
| SCP | 4.51 | -0.57 | 0.23 | 0.33 | 3.43 | -0.72 | -0.21 | 0.35 |
| STP | 0.8 | -0.36 | 0 | 0.04 | 0.39 | -0.2 | 0 | 0.03 |
| SRH 3 | 213.51 | -63.58 | 27.98 | 32.21 | 217.41 | -58.32 | 21.92 | 30.82 |
| DLS | 24.69 | 0.26 | 6.31 | 2.98 | 16.2 | 0.03 | 6.07 | 2.85 |
| LLS | 13.59 | 0.08 | 2.8 | 2.13 | 13.74 | 0 | 2.87 | 2.28 |
| PLCL | 1033.27 | 755.43 | 924.45 | 57.5 | 996.68 | 759.67 | 936.87 | 36.02 |
| 17 UTC | 00 UTC | 12 UTC | ||||||||||||||||||||||
| Index | Threshold | ACC | POD | FAR | ETS | CSI | TSS | HSS | Threshold | ACC | POD | FAR | ETS | CSI | TSS | HSS | Threshold | ACC | POD | FAR | ETS | CSI | TSS | HSS |
| CAPE | ≥1700 | 0.72 | 0.79 | 0.4 | 0.28 | 0.51 | 0.47 | 0.44 | ≥1730 | 0.71 | 0.96 | 0.59 | 0.25 | 0.39 | 0.62 | 0.4 | ≥1900 | 0.77 | 0.97 | 0.67 | 0.23 | 0.32 | 0.72 | 0.38 |
| KI | ≥26 | 0.83 | 0.74 | 0.02 | 0.51 | 0.73 | 0.71 | 0.38 | ≥27 | 0.71 | 0.46 | 0.25 | 0.23 | 0.41 | 0.35 | 0.37 | ≥29 | 0.77 | 0.63 | 0.23 | 0.34 | 0.53 | 0.5 | 0.51 |
| CT | ≥18 | 0.73 | 0.64 | 0.01 | 0.32 | 0.63 | 0.61 | 0.49 | ≥18 | 0.74 | 0.64 | 0.05 | 0.34 | 0.62 | 0.58 | 0.5 | ≥17 | 0.79 | 0.75 | 0.009 | 0.35 | 0.74 | 0.72 | 0.52 |
| VT | ≥27 | 0.88 | 0.89 | 0.02 | 0.46 | 0.87 | 0.75 | 0.63 | ≥31 | 0.78 | 0.82 | 0.35 | 0.37 | 0.57 | 0.58 | 0.54 | ≥31 | 0.7 | 0.8 | 0.65 | 0.18 | 0.31 | 0.48 | 0.31 |
| TTI | ≥46 | 0.75 | 0.69 | 0.07 | 0.32 | 0.65 | 0.56 | 0.49 | ≥48 | 0.76 | 0.69 | 0.11 | 0.36 | 0.64 | 0.56 | 0.53 | ≥44 | 0.84 | 0.82 | 0.03 | 0.43 | 0.8 | 0.71 | 0.6 |
| DEW | ≥23 | 0.74 | 0.77 | 0.13 | 0.24 | 0.69 | 0.24 | 0.38 | ≥23 | 0.71 | 0.75 | 0.13 | 0.13 | 0.67 | 0.28 | 0.23 | ≥23 | 0.83 | 0.79 | 0.2 | 0.49 | 0.65 | 0.66 | 0.66 |
| POT | ≤-50 | 0.8 | 0.83 | 0.4 | 0.38 | 0.53 | 0.62 | 0.55 | ≤-46 | 0.84 | 0.67 | 0.21 | 0.44 | 0.57 | 0.59 | 0.61 | ≤-48 | 0.91 | 0.84 | 0.21 | 0.6 | 0.68 | 0.77 | 0.75 |
| EHI | ≥1 | 0.81 | 0.67 | 0.44 | 0.31 | 0.43 | 0.52 | 0.48 | ≥0.5 | 0.72 | 0.7 | 0.55 | 0.21 | 0.37 | 0.42 | 0.35 | ≥0.5 | 0.76 | 0.4 | 0.47 | 0.34 | 0.5 | 0.35 | 0.51 |
| SCP | ≥4 | 0.94 | 0.65 | 0.09 | 0.57 | 0.6 | 0.65 | 0.72 | ≥0.5 | 0.77 | 0.74 | 0.22 | 0.37 | 0.61 | 0.54 | 0.54 | ≥2 | 0.85 | 0.89 | 0.48 | 0.39 | 0.49 | 0.74 | 0.57 |
| STP | ≥-0.1 | 0.69 | 0.77 | 0.14 | 0.03 | 0.67 | 0.07 | 0.06 | ≥-0.2 | 0.84 | 0.02 | 0.05 | 0.04 | 0.83 | 0.24 | 0.09 | ≥-0.1 | 0.77 | 0.83 | 0.08 | -0.02 | 0.77 | -0.07 | -0.05 |
| SRH | ≥140 | 0.87 | 0.53 | 0.72 | 0.18 | 0.22 | 0.43 | 0.3 | ≥80 | 0.82 | 0.57 | 0.81 | 0.11 | 0.16 | 0.41 | 0.2 | ≥100 | 0.85 | 0.89 | 0.55 | 0.35 | 0.42 | 0.74 | 0.52 |
| DLS | ≥17 | 0.9 | 0.19 | 0.16 | 0.66 | 0.77 | 0.81 | 0.8 | ≥12 | 0.85 | 0.96 | 0.21 | 0.54 | 0.75 | 0.7 | 0.7 | ≥14 | 0.83 | 0.93 | 0.22 | 0.5 | 0.73 | 0.65 | 0.67 |
| LLS | ≥7.5 | 0.94 | 0.25 | 0.95 | 0.03 | 0.04 | 0.2 | 0.06 | ≥6.5 | 0.94 | 0.56 | 0.59 | 0.28 | 0.3 | 0.52 | 0.44 | ≥5.5 | 0.94 | 0.5 | 0.97 | 0.01 | 0.02 | 0.44 | 0.03 |
| PLCL | ≥920 | 0.83 | 0.99 | 0.25 | 0.5 | 0.73 | 0.68 | 0.67 | ≥860 | 0.9 | 0.89 | 0 | 0.29 | 0.89 | 0.89 | 0.45 | ≥920 | 0.94 | 0.95 | 0.13 | 0.77 | 0.83 | 0.9 | 0.87 |
| 19 UTC | 00 UTC | 12 UTC | ||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Index | Threshold | ACC | POD | FAR | ETS | CSI | TSS | HSS | Threshold | ACC | POD | FAR | ETS | CSI | TSS | HSS | Threshold | ACC | POD | FAR | ETS | CSI | TSS | HSS |
| CAPE | ≥1300 | 0.71 | 0.26 | 0.85 | 0.01 | 0.1 | 0.04 | 0.03 | ≥800 | 0.8 | 0.42 | 0.6 | 0.17 | 0.25 | 0.3 | 0.29 | ≥1100 | 0.63 | 0.61 | 0.66 | 0.11 | 0.27 | 0.25 | 0.19 |
| KI | ≥30 | 0.93 | 0.94 | 0.01 | 0.18 | 0.93 | 0.47 | 0.3 | ≥35 | 0.84 | 0.92 | 0.1 | 0.21 | 0.83 | 0.32 | 0.35 | ≥31 | 0.93 | 0.94 | 0.01 | 0.19 | 0.93 | 0.5 | 0.32 |
| CT | ≥19 | 0.62 | 0.63 | 0.13 | 0.08 | 0.57 | 0.22 | 0.16 | ≥19 | 0.66 | 0.58 | 0.09 | 0.21 | 0.54 | 0.44 | 0.35 | ≥19 | 0.49 | 0.42 | 0.11 | 0.06 | 0.4 | 0.2 | 0.11 |
| VT | ≥24 | 0.91 | 0.93 | 0.15 | 0.7 | 0.79 | 0.84 | 0.82 | ≥25 | 0.91 | 0.93 | 0.25 | 0.63 | 0.71 | 0.84 | 0.77 | ≥24 | 0.89 | 0.94 | 0.19 | 0.65 | 0.77 | 0.81 | 0.78 |
| TTI | ≥44 | 0.82 | 0.83 | 0.44 | 0.38 | 0.49 | 0.66 | 0.55 | ≥44 | 0.83 | 0.78 | 0.57 | 0.29 | 0.37 | 0.62 | 0.46 | ≥44 | 0.79 | 0.84 | 0.52 | 0.31 | 0.43 | 0.62 | 0.47 |
| DEW | ≥21 | 0.77 | 0.76 | 0 | 0.12 | 0.76 | 0.76 | 0.22 | ≥23 | 0.37 | 0.35 | 0 | 0.01 | 0.35 | 0.35 | 0.03 | ≥21 | 0.75 | 0.72 | 0.01 | 0.24 | 0.71 | 0.66 | 0.39 |
| POT | ≤-56 | 0.76 | 0.75 | 0.03 | 0.24 | 0.73 | 0.61 | 0.39 | ≤-48 | 0.83 | 0.59 | 0.15 | 0.42 | 0.53 | 0.54 | 0.59 | ≤-58 | 0.8 | 0.85 | 0.07 | 0.17 | 0.79 | 0.36 | 0.3 |
| EHI | ≥0.5 | 0.81 | 0.64 | 0.57 | 0.25 | 0.34 | 0.41 | 0.4 | ≥0.5 | 0.88 | 0.31 | 0.79 | 0.1 | 0.14 | 0.23 | 0.18 | ≥0.5 | 0.85 | 0.45 | 0.74 | 0.14 | 0.19 | 0.34 | 0.45 |
| SCP | ≥1 | 0.88 | 0.55 | 0.49 | 0.3 | 0.36 | 0.48 | 0.46 | ≥0.5 | 0.84 | 0.44 | 0.61 | 0.19 | 0.25 | 0.34 | 0.32 | ≥0.5 | 0.81 | 0.49 | 0.5 | 0.24 | 0.33 | 0.38 | 0.38 |
| STP | ≥-0.1 | 0.82 | 0.83 | 0.01 | 0.04 | 0.82 | 0.38 | 0.08 | ≥-0.1 | 0.84 | 0.84 | 0 | 0 | 0.84 | NA | NA | ≥-0.1 | 0.81 | 0.81 | 0.006 | 0 | 0.81 | -0.18 | -0.01 |
| SRH | ≥60 | 0.79 | 0.75 | 0.27 | 0.39 | 0.58 | 0.57 | 0.56 | ≥70 | 0.75 | 0.61 | 0.29 | 0.3 | 0.49 | 0.46 | 0.47 | ≥70 | 0.82 | 0.6 | 0.5 | 0.28 | 0.37 | 0.48 | 0.44 |
| DLS | ≥15 | 0.9 | 0.84 | 0.61 | 0.31 | 0.35 | 0.74 | 0.48 | ≥16 | 0.97 | 0.92 | 0.6 | 0.36 | 0.38 | 0.89 | 0.53 | ≥15 | 0.94 | 0.87 | 0.49 | 0.44 | 0.47 | 0.82 | 0.61 |
| LLS | ≥7 | 0.87 | 0.59 | 0.34 | 0.38 | 0.45 | 0.53 | 0.55 | ≥7.5 | 0.88 | 0.42 | 0.78 | 0.13 | 0.16 | 0.33 | 0.23 | ≥7 | 0.97 | 0.24 | 0.73 | 0.13 | 0.14 | 0.23 | 0.24 |
| PLCL | ≥860 | 0.75 | 0.68 | 0.01 | 0.32 | 0.67 | 0.65 | 0.49 | ≥920 | 0.83 | 0.63 | 0.04 | 0.47 | 0.61 | 0.6 | 0.64 | ≥940 | 0.95 | 0.52 | 0.12 | 0.46 | 0.48 | 0.51 | 0.63 |
3.1.2. Assessment of thunderstorm indices over Surendranagar, Gujarat
3.1.3. Assessment of thunderstorm indices over Hooghly, West Bengal
3.1.4. Assessment of thunderstorm indices over Odisha
3.2. Model Skill Score Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Yair, Y.; Lynn, B.; Price, C.; Kotroni, V.; Lagouvardos, K.; Morin, E.; Mugnai, A.; Llasat, M.d.C. Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and Forecasting (WRF) model dynamic and microphysical fields. Journal of Geophysical Research 2010, 115. [Google Scholar] [CrossRef]
- Yair, Y.; Lynn, B.; Ziv, B.; Yaffe, M. Lightning super-bolts in Eastern Mediterranean winter thunderstorms. In Proceedings of the EGU General Assembly Conference Abstracts; 2020; p. 1788. [Google Scholar]
- Doswell, C.A. The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Weather and Forecasting 1987, 2, 3–16. [Google Scholar] [CrossRef]
- Das, S. Severe thunderstorm observation and modeling—a review. Vayu Mandal 2017, 43, 1–29. [Google Scholar]
- Kunz, M. The skill of convective parameters and indices to predict isolated and severe thunderstorms. Natural Hazards and Earth System Sciences 2007, 7, 327–342. [Google Scholar] [CrossRef]
- Anquetin, S.; Yates, E.; Ducrocq, V.; Samouillan, S.; Chancibault, K.; Davolio, S.; Accadia, C.; Casaioli, M.; Mariani, S.; Ficca, G. The 8 and 9 September 2002 flash flood event in France: a model intercomparison. Natural Hazards and Earth System Sciences 2005, 5, 741–754. [Google Scholar] [CrossRef]
- Das, Y. Some aspects of thunderstorm over India during pre-monsoon season: a preliminary report-I. Journal of Geosciences and Geomatics 2015, 3, 68–78. [Google Scholar]
- Yadava, P.K.; Soni, M.; Verma, S.; Kumar, H.; Sharma, A.; Payra, S. The major lightning regions and associated casualties over India. Natural Hazards 2020, 101, 217–229. [Google Scholar] [CrossRef]
- Siingh, D.; Buchunde, P.; Singh, R.; Nath, A.; Kumar, S.; Ghodpage, R. Lightning and convective rain study in different parts of India. J Atmospheric research 2014, 137, 35–48. [Google Scholar] [CrossRef]
- Mondal, U.; Panda, S.K.; Das, S.; Sharma, D. Spatio-temporal variability of lightning climatology and its association with thunderstorm indices over India. Theoretical and Applied Climatology 2022, 1–17. [Google Scholar] [CrossRef]
- Saha, U.; Siingh, D.; Kamra, A.K.; Galanaki, E.; Maitra, A.; Singh, R.P.; Singh, A.K.; Chakraborty, S.; Singh, R. On the association of lightning activity and projected change in climate over the Indian sub-continent. Atmospheric Research 2017, 183, 173–190. [Google Scholar] [CrossRef]
- Albrecht, R.I.; Goodman, S.J.; Buechler, D.E.; Blakeslee, R.J.; Christian, H.J. Where are the lightning hotspots on Earth? J Bulletin of the American Meteorological Society 2016, 97, 2051–2068. [Google Scholar] [CrossRef]
- Hoddinott, M. THUNDERSTORM OBSERVATIONS IN WEST BENGAL 1945–46. Weather 1986, 41, 2–5. [Google Scholar] [CrossRef]
- Mushtaq, F.; Lala, M.G.N.; Anand, A.J.J.o.A.; Physics, S.-T. Spatio-temporal variability of lightning activity over J&K region and its relationship with topography, vegetation cover, and absorbing aerosol index (AAI). 2018, 179, 281–292. [Google Scholar]
- Barthlott, C.; Corsmeier, U.; Meißner, C.; Braun, F.; Kottmeier, C. The influence of mesoscale circulation systems on triggering convective cells over complex terrain. Atmospheric research 2006, 81, 150–175. [Google Scholar] [CrossRef]
- Orville, H.D. A photogrammetric study of the initiation of cumulus clouds over mountainous terrain. Journal of Atmospheric Sciences 1965, 22, 700–709. [Google Scholar] [CrossRef]
- Mapes, B.; Houze Jr, R.A. An integrated view of the 1987 Australin monsoon and its mesoscale convective systems. II: Vertical structure. Quarterly Journal of the Royal Meteorological Society 1993, 119, 733–754. [Google Scholar] [CrossRef]
- Haklander, A.J.; Van Delden, A. Thunderstorm predictors and their forecast skill for the Netherlands. Atmospheric Research 2003, 67, 273–299. [Google Scholar] [CrossRef]
- Kaltenböck, R.; Diendorfer, G.; Dotzek, N. Evaluation of thunderstorm indices from ECMWF analyses, lightning data and severe storm reports. Atmospheric Research 2009, 93, 381–396. [Google Scholar] [CrossRef]
- Guerova, G.; Dimitrova, T.; Georgiev, S. Thunderstorm classification functions based on instability indices and GNSS IWV for the Sofia Plain. Remote Sensing 2019, 11, 2988. [Google Scholar] [CrossRef]
- Bondyopadhyay, S.; Mohapatra, M. Determination of suitable thermodynamic indices and prediction of thunderstorm events for Eastern India. Meteorology and Atmospheric Physics 2023, 135, 1–13. [Google Scholar] [CrossRef]
- Bondyopadhyay, S.; Mohapatra, M.; Sen Roy, S. Determination of suitable thermodynamic indices and prediction of thunderstorm events for Kolkata, India. Meteorology and Atmospheric Physics 2021, 133, 1367–1377. [Google Scholar] [CrossRef]
- Sahu, R.K.; Dadich, J.; Tyagi, B.; Vissa, N.K.; Singh, J. Evaluating the impact of climate change in threshold values of thermodynamic indices during pre-monsoon thunderstorm season over Eastern India. Natural Hazards 2020, 102, 1541–1569. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Sanjay, J.; Singh, S. Objective forecast of thundery/nonthundery days using conventional indices over three northeast Indian stations. Mausam 2003, 54, 867–880. [Google Scholar] [CrossRef]
- Umakanth, N.; Satyanarayana, G.C.; Simon, B.; Rao, M.; Babu, N.R. Long-term analysis of thunderstorm-related parameters over Visakhapatnam and Machilipatnam, India. Acta Geophysica 2020, 68, 921–932. [Google Scholar] [CrossRef]
- Stone, H.M. A comparison among various thermodynamic parameters for the prediction of convective activity. 1985.
- Johns, R.H.; Doswell III, C.A. Severe local storms forecasting. Wea. Forecasting 1992, 7, 588–612. [Google Scholar] [CrossRef]
- Wilson, J.W.; Mueller, C.K. Nowcasts of thunderstorm initiation and evolution. Weather and Forecasting 1993, 8, 113–131. [Google Scholar] [CrossRef]
- Schultz, P. Relationships of several stability indices to convective weather events in northeast Colorado. Weather and Forecasting 1989, 4, 73–80. [Google Scholar] [CrossRef]
- Fuelberg, H.E.; Biggar, D.G. The preconvective environment of summer thunderstorms over the Florida panhandle. Weather and Forecasting 1994, 9, 316–326. [Google Scholar] [CrossRef]
- Huntrieser, H.; Schiesser, H.; Schmid, W.; Waldvogel, A. Comparison of traditional and newly developed thunderstorm indices for Switzerland. Weather and Forecasting 1997, 12, 108–125. [Google Scholar] [CrossRef]
- Brooks, H.; Wilhelmson, R. Numerical simulation of a low-precipitation supercell thunderstorm. Meteorology and Atmospheric Physics 1992, 49, 3–17. [Google Scholar] [CrossRef]
- Litta, A.; Mohanty, U. Simulation of a severe thunderstorm event during the field experiment of STORM programme 2006, using WRF–NMM model. Current Science 2008, 204–215. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Rajasekhar, M.; Sreeshna, T.; Rajeevan, M.; Ramakrishna, S. Prediction of severe thunderstorms over Sriharikota Island by using the WRF-ARW operational model. In Proceedings of the Remote sensing and modeling of the atmosphere, oceans, and interactions VI; 2016; pp. 147–164. [Google Scholar]
- Huang, H.; Lin, C.; Chen, Y. Sensitivity Analysis of Weather Research and Forecasting (WRF) Model Output Variables to The Thunderstorm Lifecycle and Its Application. 2022.
- Dhawan, V.; Tyagi, A.; Bansal, M. Forecasting of thunderstorms in pre-monsoon season over northwest India. Mausam 2008, 59, 433–444. [Google Scholar] [CrossRef]
- Tyagi, B.; Naresh Krishna, V.; Satyanarayana, A. Study of thermodynamic indices in forecasting pre-monsoon thunderstorms over Kolkata during STORM pilot phase 2006–2008. Natural hazards 2011, 56, 681–698. [Google Scholar] [CrossRef]
- Robinson, E.D.; Trapp, R.J.; Baldwin, M.E. The geospatial and temporal distributions of severe thunderstorms from high-resolution dynamical downscaling. Journal of Applied Meteorology and Climatology 2013, 52, 2147–2161. [Google Scholar] [CrossRef]
- Tajbakhsh, S.; Ghafarian, P.; Sahraian, F. Instability indices and forecasting thunderstorms: the case of 30 April 2009. Natural Hazards and Earth System Sciences 2012, 12, 403–413. [Google Scholar] [CrossRef]
- Gubenko, I.M.; Rubinshtein, K.G. Thunderstorm activity forecasting based on the model of cumulonimbus cloud electrification. Russian Meteorology and Hydrology 2017, 42, 77–87. [Google Scholar] [CrossRef]
- Peppler, R.A. A review of static stability indices and related thermodynamic parameters. ISWS Miscellaneous Publication MP-104 1988.
- LAMB, P.; PEPPLER, R. Tropospheric static stability and central North American rainfall during 1979. In Proceedings of the NOAA Proc. of the 9 th Ann. Climate Diagnostics Workshop p 274-283(SEE N 86-11763 02-47); 1985. [Google Scholar]
- Markowski, P.M.; Straka, J.M.; Rasmussen, E.N.; Blanchard, D.O. Variability of storm-relative helicity during VORTEX. Monthly weather review 1998, 126, 2959–2971. [Google Scholar] [CrossRef]
- Thompson, R.L.; Edwards, R.; Mead, C.M. An update to the supercell composite and significant tornado parameters. In Proceedings of the Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc. P; 2004. [Google Scholar]
- Rasmussen, E.N. Refined supercell and tornado forecast parameters. Weather and Forecasting 2003, 18, 530–535. [Google Scholar] [CrossRef]
- George, J.J. Weather forecasting for aeronautics; Academic press, 2014. [Google Scholar]
- Moncrieff, M.W.; Miller, M.J. The dynamics and simulation of tropical cumulonimbus and squall lines. Quarterly Journal of the Royal Meteorological Society 1976, 102, 373–394. [Google Scholar] [CrossRef]
- Johns, R.H.; Davies, J.M.; Leftwich, P.W. Some wind and instability parameters associated with strong and violent tornadoes, 2, Variations in the combinations of wind and instability parameters. GEOPHYSICAL MONOGRAPH-AMERICAN GEOPHYSICAL UNION 1993, 79, 583–583. [Google Scholar]
- Kulikov, M.Y.; Belikovich, M.V.; Skalyga, N.K.; Shatalina, M.V.; Dementyeva, S.O.; Ryskin, V.G.; Shvetsov, A.A.; Krasil’nikov, A.A.; Serov, E.A.; Feigin, A.M. Skills of thunderstorm prediction by convective indices over a metropolitan area: comparison of microwave and radiosonde data. Remote Sensing 2020, 12, 604. [Google Scholar] [CrossRef]
- Schaefer, J.T. The critical success index as an indicator of warning skill. Weather and forecasting 1990, 5, 570–575. [Google Scholar] [CrossRef]
- DOSWELL, C.; Davies-Jones, R.; Keller, D.L. On summary measures of skill in rare event forecasting based on contingency tables. Weather and forecasting 1990, 5, 576–585. [Google Scholar] [CrossRef]
- NCEP GDAS/FNL 0. 25 Degree Global Tropospheric Analyses and Forecast Grids. 2015. [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Dee, D.; Horányi, A.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I. The ERA5 Global Atmospheric Reanalysis at ECMWF as a comprehensive dataset for climate data homogenization, climate variability, trends and extremes. In Proceedings of the Geophysical Research Abstracts; 2019. [Google Scholar]
- Blakeslee, R.J.; Lang, T.J.; Koshak, W.J.; Buechler, D.; Gatlin, P.; Mach, D.M.; Stano, G.T.; Virts, K.S.; Walker, T.D.; Cecil, D.J.J.J.o.G.R.A. Three years of the lightning imaging sensor onboard the international space station: Expanded global coverage and enhanced applications. 2020, 125, e2020JD032918. [Google Scholar] [CrossRef]
- Wheatcroft, E. Interpreting the skill score form of forecast performance metrics. International Journal of Forecasting 2019, 35, 573–579. [Google Scholar] [CrossRef]
- Miller, R. C (1967) Notes on analysis and severe storm forecasting procedures of the Military Weather Warning Center Tech. Rep. 200, AWS, US Air Force 94 [Headquarters, AWS, Scott AFB, IL 62225].
- Miller, R.C. Notes on analysis and severe-storm forecasting procedures of the Air Force Global Weather Central (No. AWS-TR-200-REV). Air Weather Service Scott Afb Il. 1972. [Google Scholar]














| Events | Date | Datasets | Flash Counts (Number) |
|---|---|---|---|
| Surendranagar, Gujarat | 04 June 2021 | ISS-LIS | 333 in 16 orbits |
| Raygada, Odisha | 24 June 2020 | ISS-LIS | 16 in 16 orbits |
| Udaipur, Rajasthan | 11 July 2021 | ISS-LIS | 244 in 16 orbits |
| Hooghly, West Bengal | 07 June 2021 | ISS-LIS | 293 in 16 orbits |
| Parameter | Details |
| WRF version | 4.0.3 version |
| Spatial resolution | 9 and 3 Km |
| Model integration time | 24 Hr |
| Time Step | 54 Sec |
| Vertical Resolution | 34 Level |
| Lightning option | 3 (Yair et al., 2010) |
| Physics options | Exp -1 | Exp -2 | Exp -3 | Exp -4 |
|---|---|---|---|---|
| Microphysics | WSM-6 | NSSL-2 | MORR | WSM-6 |
| Longwave radiation | RRTM | RRTM | RRTM | RRTM |
| Shortwave radiation | DUDHIA | RRTMG | RRTMG | DUDHIA |
| Land cover classification | MYNN | MM5 | MM5 | MM5 |
| Surface layer | NOAH | NOAH | NOAH | NOAH |
| Planet boundary layer | MYNN | YSU | YSU | YSU |
| Cumulus convection | GRELL-D | GRELL-D | GRELL-D | GRELL-D |
| Observation (Yes) | Observation (No) | Total | |
| Forecast (Yes) | Hits (YY) | False Alarm (YN) | YY+YN |
| Forecast (No) | Misses (NY) | Correct (NN) | NY+NN |
| Total | YY+NN | YN+NN | T=YY+YN+NY+NN |
| Statistics | Formula | Definition | Range |
|---|---|---|---|
| Accuracy (ACC) | What fraction of the forecasts were correct | 0 to 1 | |
| Probability of Detection (POD) | POD = YY/YY+NY | What fraction of the observed “yes” events were correctly forecast | 0 to 1 |
| Equitable Threat Score (ETS) |
|
How well did the forecast “Yes” events correspond to the observed “yes” events (accounting for hits that would be expected by chance | -1 to 1 |
| False Alarm Ration (FAR) | FAR = YN/YY+YN | What fraction of the predicted “yes” events actually did not occur | 0 to 1 |
| 09 UTC | 00 UTC | 12 UTC | ||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Index | Threshold | ACC | POD | FAR | ETS | CSI | TSS | HSS | Threshold | ACC | POD | FAR | ETS | CSI | TSS | HSS | Threshold | ACC | POD | FAR | ETS | CSI | TSS | HSS |
| CAPE | ≥3800 | 0.92 | 0.46 | 0.43 | 0.3 | 0.34 | 0.43 | 0.47 | ≥3900 | 0.95 | 0.31 | 0.3 | 0.25 | 0.27 | 0.3 | 0.41 | ≥4300 | 0.95 | 0.92 | 0.86 | 0.12 | 0.13 | 0.88 | 0.22 |
| KI | ≥31 | 0.92 | 0.98 | 0.07 | 0.48 | 0.91 | 0.56 | 0.65 | ≥26 | 0.91 | 0.96 | 0.05 | 0.41 | 0.91 | 0.58 | 0.62 | ≥31 | 0.9 | 0.97 | 0.08 | 0.43 | 0.9 | 0.51 | 0.6 |
| CT | ≥17 | 0.57 | 0.56 | 0.007 | 0.02 | 0.56 | 0.42 | 0.05 | ≥17 | 0.67 | 0.65 | 0.03 | 0.13 | 0.63 | 0.47 | 0.23 | ≥16 | 0.79 | 0.8 | 0.02 | 0.1 | 0.78 | 0.42 | 0.19 |
| VT | ≥25 | 0.87 | 0.95 | 0.13 | 0.58 | 0.82 | 0.71 | 0.73 | ≥26 | 0.76 | 0.92 | 0.29 | 0.34 | 0.66 | 0.51 | 0.51 | ≥25 | 0.84 | 0.96 | 0.18 | 0.5 | 0.78 | 0.64 | 0.67 |
| TTI | ≥44 | 0.72 | 0.7 | 0.15 | 0.28 | 0.62 | 0.46 | 0.43 | ≥42 | 0.82 | 0.9 | 0.12 | 0.3 | 0.79 | 0.44 | 0.46 | ≥44 | 0.8 | 0.82 | 0.13 | 0.41 | 0.73 | 0.59 | 0.58 |
| DEW | ≥24 | 0.75 | 0.62 | 0.03 | 0.35 | 0.61 | 0.58 | 0.52 | ≥24 | 0.52 | 0.45 | 0.02 | 0.09 | 0.44 | 0.39 | 0.17 | ≥24 | 0.67 | 0.57 | 0.002 | 0.23 | 0.57 | 0.57 | 0.37 |
| POT | ≤-44 | 0.92 | 0.23 | 0.4 | 0.18 | 0.2 | 0.22 | 0.3 | ≤-44 | 0.84 | 0.17 | 0.55 | 0.1 | 0.14 | 0.14 | 0.18 | ≤-52 | 0.74 | 0.72 | 0.08 | 0.26 | 0.67 | 0.5 | 0.41 |
| EHI | ≥0.5 | 0.8 | 0.76 | 0.17 | 0.43 | 0.65 | 0.6 | 0.6 | ≥0.5 | 0.81 | 0.77 | 0.14 | 0.46 | 0.68 | 0.63 | 0.63 | ≥0.5 | 0.71 | 0.72 | 0.32 | 0.27 | 0.54 | 0.43 | 0.42 |
| SCP | ≥0.5 | 0.82 | 0.76 | 0.09 | 0.48 | 0.7 | 0.66 | 0.65 | ≥0.5 | 0.79 | 0.69 | 0.06 | 0.42 | 0.66 | 0.62 | 0.59 | ≥0.5 | 0.74 | 0.69 | 0.13 | 0.31 | 0.62 | 0.51 | 0.48 |
| STP | ≥0.2 | 0.85 | 0.63 | 0.3 | 0.38 | 0.49 | 0.55 | 0.56 | ≥0.2 | 0.79 | 0.42 | 0.2 | 0.27 | 0.38 | 0.37 | 0.43 | ≥0.2 | 0.78 | 0.67 | 0.38 | 0.32 | 0.47 | 0.5 | 0.49 |
| SRH | ≥220 | 0.98 | 0.89 | 0.56 | 0.4 | 0.41 | 0.87 | 0.57 | ≥190 | 0.95 | 0.92 | 0.31 | 0.61 | 0.64 | 0.88 | 0.76 | ≥230 | 0.96 | 0.69 | 0.19 | 0.57 | 0.59 | 0.68 | 0.72 |
| DLS | ≥11 | 0.77 | 0.88 | 0.4 | 0.36 | 0.55 | 0.61 | 0.53 | ≥10 | 0.78 | 0.84 | 0.3 | 0.4 | 0.61 | 0.59 | 0.57 | ≥9 | 0.75 | 0.78 | 0.15 | 0.3 | 0.68 | 0.48 | 0.46 |
| LLS | ≥7 | 0.93 | 0.54 | 0.52 | 0.3 | 0.33 | 0.5 | 0.47 | ≥4 | 0.93 | 0.92 | 0.04 | 0.74 | 0.89 | 0.86 | 0.85 | ≥5 | 0.61 | 0.29 | 0.33 | 0.09 | 0.25 | 0.17 | 0.18 |
| PLCL | ≥880 | 0.88 | 0.77 | 0.001 | 0.63 | 0.77 | 0.77 | 0.77 | ≥940 | 0.88 | 0.81 | 0.005 | 0.63 | 0.8 | 0.8 | 0.77 | ≥900 | 0.86 | 0.75 | 0.007 | 0.58 | 0.75 | 0.74 | 0.73 |
| 13 UTC | 00 UTC | 12 UTC | ||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Index | Threshold | ACC | POD | FAR | ETS | CSI | TSS | HSS | Threshold | ACC | POD | FAR | ETS | CSI | TSS | HSS | Threshold | ACC | POD | FAR | ETS | CSI | TSS | HSS |
| CAPE | ≥1300 | 0.55 | 0.87 | 0.51 | 0.09 | 0.45 | 0.19 | 0.17 | ≥1400 | 0.82 | 0.89 | 0.25 | 0.48 | 0.68 | 0.67 | 0.65 | ≥1200 | 0.6 | 0.9 | 0.45 | 0.13 | 0.51 | 0.24 | 0.23 |
| KI | ≥34 | 0.91 | 0.87 | 0.06 | 0.69 | 0.82 | 0.82 | 0.82 | ≥35 | 0.79 | 0.7 | 0.11 | 0.42 | 0.64 | 0.6 | 0.6 | ≥34 | 0.87 | 0.83 | 0.08 | 0.6 | 0.77 | 0.75 | 0.75 |
| CT | ≥18 | 0.83 | 0.9 | 0.15 | 0.47 | 0.77 | 0.62 | 0.63 | ≥20 | 0.69 | 0.46 | 0.49 | 0.15 | 0.31 | 0.26 | 0.26 | ≥18 | 0.83 | 0.89 | 0.13 | 0.45 | 0.78 | 0.6 | 0.62 |
| VT | ≥23 | 0.72 | 0.81 | 0.24 | 0.26 | 0.64 | 0.4 | 0.41 | ≥24 | 0.87 | 0.86 | 0.22 | 0.56 | 0.69 | 0.73 | 0.72 | ≥24 | 0.75 | 0.7 | 0.63 | 0.2 | 0.31 | 0.46 | 0.33 |
| TTI | ≥42 | 0.72 | 0.91 | 0.43 | 0.3 | 0.53 | 0.53 | 0.46 | ≥42 | 0.77 | 0.88 | 0.22 | 0.35 | 0.7 | 0.5 | 0.52 | ≥42 | 0.7 | 0.9 | 0.43 | 0.28 | 0.53 | 0.49 | 0.44 |
| DEW | ≥23 | 0.78 | 0.78 | 0 | 0.001 | 0.78 | 0.78 | 0.003 | ≥23 | 0.71 | 0.71 | 0.001 | 0.009 | 0.71 | 0.53 | 0.01 | ≥24 | 0.69 | 0.67 | 0.001 | 0.1 | 0.67 | 0.65 | 0.18 |
| POT | ≤-50 | 0.88 | 0.77 | 0.01 | 0.61 | 0.76 | 0.75 | 0.76 | ≤-48 | 0.74 | 0.67 | 0.33 | 0.29 | 0.5 | 0.46 | 0.46 | ≤-50 | 0.87 | 0.76 | 0.02 | 0.6 | 0.74 | 0.74 | 0.75 |
| EHI | ≥1 | 0.89 | 0.37 | 0.71 | 0.15 | 0.19 | 0.3 | 0.26 | ≥0.5 | 0.89 | 0.55 | 0.58 | 0.26 | 0.13 | 0.48 | 0.42 | ≥0.5 | 0.65 | 0.76 | 0.76 | 0.11 | 0.22 | 0.4 | 0.2 |
| SCP | ≥0.5 | 0.84 | 0.65 | 0.55 | 0.28 | 0.36 | 0.53 | 0.44 | ≥0 | 0.74 | 0.76 | 0.15 | 0.29 | 0.67 | 0.47 | 0.45 | ≥0.5 | 0.84 | 0.62 | 0.55 | 0.27 | 0.34 | 0.5 | 0.42 |
| STP | ≥-0.1 | 0.92 | 0.92 | 0 | 0 | 0.92 | 0 | 0 | ≥-0.1 | 0.92 | 0.93 | 0.006 | -0.01 | 0.92 | -0.06 | -0.01 | ≥-0.1 | 0.92 | 0.92 | 0.001 | -0.01 | 0.92 | -0.7 | -0 |
| SRH | ≥70 | 0.91 | 0.61 | 0.35 | 0.4 | 0.45 | 0.56 | 0.57 | ≥50 | 0.89 | 0.47 | 0.32 | 0.33 | 0.38 | 0.43 | 0.49 | ≥70 | 0.89 | 0.51 | 0.41 | 0.32 | 0.37 | 0.46 | 0.49 |
| DLS | ≥6 | 0.74 | 0.78 | 0.36 | 0.32 | 0.54 | 0.51 | 0.48 | ≥6 | 0.89 | 0.92 | 0.1 | 0.66 | 0.83 | 0.79 | 0.79 | ≥6 | 0.76 | 0.77 | 0.31 | 0.35 | 0.54 | 0.52 | 0.51 |
| LLS | ≥3.5 | 0.87 | 0.67 | 0.14 | 0.5 | 0.6 | 0.62 | 0.66 | ≥2.5 | 0.79 | 0.81 | 0.16 | 0.39 | 0.7 | 0.56 | 0.56 | ≥2 | 0.79 | 0.69 | 0.19 | 0.4 | 0.59 | 0.56 | 0.57 |
| PLCL | ≥940 | 0.92 | 0.94 | 0.11 | 0.72 | 0.84 | 0.84 | 0.84 | ≥960 | 0.88 | 0.88 | 0.09 | 0.6 | 0.8 | 0.76 | 0.75 | ≥940 | 0.93 | 0.93 | 0.07 | 0.77 | 0.86 | 0.87 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).