Submitted:
01 May 2023
Posted:
02 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Material and methods
2.1. Survey design and data
2.2. Modelling framework
3. Results
3.1. Descriptive analysis
3.2. Econometric results
3.3. Households’ behavior and WTP for LO apples
4. Conclusions
| 1 | The LF term is associated as being produced in the locality in which the final product is sold (e.g., Adams and Salois, 2010). Determinants such as taste, high quality and trust in food supply are the key drivers for consuming LF (Feldmann and Hamm, 2015) even if social and altruistic features plays an important role in supporting LF farmers. More in general Arthur and Yamoah (2019) underline the growing relevance of environmental quality attributes in food-related rural enterprise performance. |
| 2 | Within family we restricted our sample to wife and husband because they are primarily responsible for food shopping. |
| 3 | In order to avoid problems related to misunderstanding and semantic and measurement problems, we have tested a preliminary version of the questionnaire using 15 couples. |
| 4 | Scholars have investigated several types of relationships among local and organic characteristics. Gracia et al. (2014), focusing on eggs, found that local and organic claims are complements even if preferences for organic and locally produced food vary among consumers (James et al., 2009). This underlines the existence of heterogeneity in consumer preference and WTP for different attributes across product local and organic products (Hu et al., 2009). |
| 5 | Apples are a low-cost commodity; thus, it is not reasonable to think that the marginal utility of income might varies with the income of respondents. According to Haab and McConnell (2002, pp. 46-47), we have expressed the income in categories, allowing coefficients to vary by income categories. |
| 6 | However, there are studies that instead show a low effect of this variable on preferences or spending on environmental quality (e.g., Ghalwash, 2008). |
References
- Adams, D.C.; Salois, M.J. Local versus organic: A turn in consumer preferences and willingness-to-pay. Renew. Agric. Food Syst. 2010, 25, 331–334. [Google Scholar] [CrossRef]
- Arthur, I.K.; Yamoah, F.A. Understanding the role of environmental quality attributes in food-related rural enterprise competitiveness. Journal of environmental management, 2019, 247, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Bateman, I.J.; Cole, M.A.; Georgiou, S.; Hadley, D.J. Comparing contingent valuation and contingent ranking: A case study considering the benefits of urban river water quality improvements. J. Environ. Manag. 2006, 79, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Bove, C.F.; Sobal, J.; Rauschenbach, B.S. Food choices among newly married couples: Convergence, conflict, individualism, and projects. Appetite, 2003, 40, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Calia, P.; Strazzera, E. Bias and efficiency of single versus double bound models for contingent valuation studies: A Monte Carlo analysis. Appl. Econ. 2000, 32, 1329–1336. [Google Scholar] [CrossRef]
- Campbell, B.L.; Mhlanga, S.; Lesschaeve, I. Perception versus reality: Canadian consumer views of local and organic. Can. J. Agric. Econ. 2013, 61, 531–558. [Google Scholar] [CrossRef]
- Carson, R.T.; Groves, R.; Machina, M. , 1999. Incentive and Informational Properties of Preferences Questions. Oslo, Norway: Plenary Address, European Association Environ. Resour. Economists (EAERE).
- Davis, G. The many ways COVID-19 affects households: Consumption, time, and health outcomes. Rev. Econ. Househ. 2021, 1–9. [Google Scholar] [CrossRef] [PubMed]
- DOXA, 2020. Percezione, atteggiamenti e abitudini: Gli italiani all’epoca del Covid-19. Available on-line at (only in Italian): https://www.bva-doxa.com/percezione-atteggiamenti-e-abitudini-gli-italiani-allepoca-del-covid-19/ (accessed 10 September 2020).
- FAO, 2020. COVID-19 and the risk to food supply chains: How to respond? FAO, Rome.
- Feldmann, C.; Hamm, U. Consumers’ perceptions and preferences for local food: A review. Food Qual. Prefer. 2015, 40, 152–164. [Google Scholar] [CrossRef]
- Gayle, P.G.; Wang, J.; Fang, S. The Organic food price premium and its susceptibility to news media coverage: Evidence from the US milk industry. Appl. Econ. 2022, 1–20. [Google Scholar] [CrossRef]
- Ghalwash, T.M. Demand for environmental quality: An empirical analysis of consumer behavior in Sweden. Environ. Resour. Econ. 2008, 41, 71–87. [Google Scholar] [CrossRef]
- Gracia, A.; Barreiro-Hurlé, J.; Galán, B.L. Are local and organic claims complements or substitutes? A consumer preferences study for eggs. J Agric. Econ. 2014, 65, 49–67. [Google Scholar]
- Haab, T.C.; McConnell, K.E. 2002. Valuing environmental and natural resources: The econometrics of non-market valuation. Edward Elgar Publishing, Northampton.
- Hanemann, M.; Loomis, J.; Kanninen, B. Statistical efficiency of double-bounded dichotomous choice contingent valuation. Am. J. Agric. Econ. 1991, 73, 1255–1263. [Google Scholar] [CrossRef]
- Hu, W.; Woods, T.; Bastin, S. Consumer acceptance and willingness to pay for blueberry products with nonconventional attributes. J. Agric. Appl. Econ. 2009, 41, 47–60. [Google Scholar] [CrossRef]
- Istat, 2020. Condizioni di vita, reddito e carico fiscale delle famiglie, Anno 2019. Statistiche-Report. ISTAT – Roma.
- James, J.S.; Rickard, B.J.; Rossman, W.J. Product differentiation and market segmentation in applesauce: Using a choice experiment to assess the value of organic, local, and nutrition attributes. Agric. Resour. Econ. Rev. 2009, 38, 357–370. [Google Scholar] [CrossRef]
- Johnston, R.J.; Boyle, K.J.; Adamowicz, W.; Bennett, J.; Brouwer, R.; Cameron, T.A.; Hanemann, W.M.; Hanley, N.; Ryan, M.; Scarpa, R.; Tourangeau, R.; Christian, A.; Vossler, C.A. Contemporary guidance for stated preference studies. J. Ass. Environ. Resour. Econ. 2017, 4, 319–405. [Google Scholar] [CrossRef]
- Le, T.T.P. Aramaki, Factors affecting households’ willingness to pay for improved wastewater services in Ho Chi Minh City, Vietnam. J. Water Environ. Technol. 2019, 17, 163–173. [Google Scholar] [CrossRef]
- Lloyd-Smith, P.; Zawojska, E.; Adamowicz, W. Moving beyond the contingent valuation versus choice experiment debate: Presentation effects in stated preference. Land Econ. 2020, 96, 1–24. [Google Scholar] [CrossRef]
- Lo, A.Y. National income and environmental concern: Observations from 35 countries. Public Underst. Sci. 2016, 25, 873–890. [Google Scholar] [CrossRef]
- Longo, A.; Hoyos, D.; Markandya, A. Sequence effects in the valuation of multiple environmental programs using the contingent valuation method. Land Econ. 2015, 91, 20–35. [Google Scholar] [CrossRef]
- Marcucci, E.; Stathopoulos, A.; Rotaris, L.; Danielis, R. Comparing single and joint preferences: A choice experiment on residential location in three-member households. Environ. Plan. A. 2011, 43, 1209–1225. [Google Scholar] [CrossRef]
- Meas, T.; Hu, W.; Batte, M.T.; Woods, T.A.; Ernst, S. Substitutes or complements? Consumer preference for local and organic food attributes. Am. J. Agric. Econ. 2015, 97, 1044–1071. [Google Scholar]
- Nguyen, L.; Schmitz, A. The welfare impacts of Covid-19 on the US salmon sector. Appl. Econ. 2022, 1–17. [Google Scholar]
- Nwofoke, C.; Onyenekwe, S.C.; Agbo, F.U. Willingness to pay (WTP) for an improved environmental quality in Ebonyi State, Nigeria. J. Environ. Prot. 2017, 8, 131. [Google Scholar] [CrossRef]
- O'Hara, S.; Toussaint, E.C. Food access in crisis: Food security and COVID-19. Ecol. Econ. 2021, 180, 106859. [Google Scholar] [CrossRef]
- PwC, 2020. COVID-19: Operations and supply chain disruption. https://www.pwc.com/us/en/library/covid-19/supply-chain.html (last accessed: 10.05.2021).
- Rodríguez, L.C.; Pascual, U.; Niemeyer, H.M. Local identification and valuation of ecosystem goods and services from Opuntia scrublands of Ayacucho, Peru. Ecol. Econ. 2006, 57, 30–44. [Google Scholar] [CrossRef]
- Zellner, A. An efficient method of estimating seemingly unrelated regression equations and tests for aggregation bias. J. Am. Stat. Ass. 1962, 57, 348–368. [Google Scholar] [CrossRef]
| First survey (1) -327 couples- | Second survey (2) -248 couples- | ||||||||||
| Variables(a) | wife (w) | husband (h) | wife (w) | husband (h) | |||||||
| Acronym (c) | Type | Description | Unit | mean | S.D. | mean | S.D. | mean | S.D. | mean | S.D. |
| LHS | |||||||||||
| resp[k]_[z]s | dummy | responses: Pr(Yes=1) | # | 0.526 | 0.499 | 0.563 | 0.497 | 0.665 | 0.473 | 0.605 | 0.490 |
| resp[k]_[z]j | # | 0.532 | 0.500 | 0.602 | 0.490 | 0.673 | 0.470 | 0.657 | 0.476 | ||
| RHS(d) | |||||||||||
| bid_LO[k] | cont. | bid | euro (€) | 2.866 | 2.052 | 2.866 | 2.052 | 2.823 | 2.169 | 2.823 | 2.169 |
| fam[k] | cont. | household components | nr. | 3.333 | 1.244 | 3.333 | 1.244 | 3.508 | 1.260 | 3.508 | 1.260 |
| educ[k]_[z] | cont. | years of education | nr. | 15.245 | 3.114 | 14.520 | 3.446 | 15.258 | 3.314 | 14.855 | 3.385 |
| socac[k]_[z] | dummy | social activities (1=yes) | # | 0.697 | 0.460 | 0.621 | 0.486 | 0.706 | 0.457 | 0.637 | 0.457 |
| income[k] | scale | income level (1-8; 8=max) | # | 4.183 | 1.684 | 4.183 | 1.684 | 4.556 | 1.581 | 4.556 | 1.581 |
| purcfv[k] | scale | monthly expenditure in fruit vegetables (1-5; 5=max) | # | 3.003 | 0.805 | 3.003 | 0.805 | 3.100 | 0.811 | 3.100 | 0.811 |
| lab[k]_[z] | scale | interested in reading labels (1-10; 10=max) | # | 5.287 | 3.170 | 4.544 | 3.199 | 5.501 | 3.003 | 4.427 | 3.163 |
| resy[k]_[z] | cont. | families' years of residence (ancestors included) | nr. | 31.471 | 14.889 | 33.113 | 17.464 | 31.471 | 14.889 | 33.113 | 17.464 |
| farmkt[k]_[z] | dummy | shop at farmers’ market (1 = yes) | # | 0.269 | 0.444 | 0.248 | 0.432 | 0.314 | 0.465 | 0.278 | 0.449 |
| age[k]_[z] | cont. | age of respondents | nr. | 48.535 | 12.483 | 50.771 | 14.478 | 48.535 | 12.483 | 50.771 | 14.478 |
| mun[k] | dummy | municipality < 10.000 res. (1 = yes) | # | 0.324 | 0.469 | 0.324 | 0.469 | 0.359 | 0.481 | 0.359 | 0.481 |
| orlochea[k]_[z]s | cont. | order: local development vs. healthy food | % | 46.300 | 22.810 | 46.330 | 21.564 | 43.548 | 22.359 | 46.129 | 21.865 |
| orlochea[k]_[z]j | 46.300 | 22.810 | 45.780 | 21.463 | 43.548 | 22.359 | 46.129 | 21.865 | |||
| orloccli[k]_[z]s | cont. | order: local development vs. climate change | % | 61.957 | 22.081 | 38.226 | 20.632 | 59.556 | 23.209 | 38.992 | 21.412 |
| orloccli[k]_[z]j | 61.957 | 22.081 | 38.226 | 20.632 | 58.831 | 23.496 | 38.992 | 21.412 | |||
| orheacli[k]_[z]s | cont. | order: healthy food vs. climate change | % | 43.150 | 17.814 | 38.840 | 17.440 | 65.968 | 17.993 | 61.290 | 17.678 |
| orheacli[k]_[z]j | 43.150 | 17.814 | 38.840 | 17.440 | 65.968 | 17.993 | 61.290 | 17.678 | |||
| leis_var2_[z](b) | scale | family income variation (from -6 to +6) | # | 3.085 | 1.189 | 2.923 | 1.196 | ||||
| incomf_var2(b) | scale | reduction in income (10 - 50 or more) | # | 0.319 | 1.316 | 0.319 | 1.316 | ||||
| covid2_[z](b) | ordinal | infections among household members (0-3; 3=max) | # | 0.544 | 0.850 | 0.464 | 0.725 | ||||
| hmfd2_[z](b) | dummy | increasing in home-produced meals (1=yes) | # | 0.452 | 0.500 | 0.391 | 0.489 | ||||
| Variables | First survey [1] | Second survey [2] | ||||||
| wife [w] | husband [h] | wife [w] | husband [h] | |||||
| s | j | s | j | s | j | s | j | |
| orlochea* Local < 50% | 0.50 | 0.50 | 0.46 | 0.47 | 0.54 | 0.53 | 0.48 | 0.48 |
| Local = 50% (Healthy = 50%) | 0.13 | 0.13 | 0.20 | 0.20 | 0.13 | 0.13 | 0.18 | 0.18 |
| Local > 50% | 0.37 | 0.37 | 0.34 | 0.33 | 0.33 | 0.34 | 0.35 | 0.35 |
| orloccli** Local < 50% | 0.20 | 0.20 | 0.65 | 0.65 | 0.25 | 0.26 | 0.63 | 0.63 |
| Local = 50% (Climate = 50%) | 0.13 | 0.13 | 0.14 | 0.14 | 0.13 | 0.13 | 0.13 | 0.13 |
| Local > 50% | 0.67 | 0.67 | 0.22 | 0.22 | 0.62 | 0.61 | 0.24 | 0.24 |
| orheacli*** Healthy < 50% | 0.56 | 0.56 | 0.64 | 0.64 | 0.15 | 0.15 | 0.14 | 0.14 |
| Healthy = 50% (Climate = 50%) | 0.25 | 0.25 | 0.22 | 0.22 | 0.13 | 0.13 | 0.23 | 0.23 |
| Healthy > 50% | 0.19 | 0.19 | 0.13 | 0.13 | 0.72 | 0.72 | 0.63 | 0.63 |
| *Local development vs. Healthy food; **Local development vs. Climate change; ***Healthy food vs. Climate change | ||||||||
| (a) WTP | hs | hj | ws | Wj | ||||||||||||
| No | Yes | P(Yes) | Cum | No | Yes | P(Yes) | Cum | No | Yes | P(Yes) | Cum | No | Yes | P(Yes) | Cum | |
| 0.8 | 4 | 37 | 90.24% | 0.20 | 1 | 40 | 97.56% | 0.20 | 9 | 32 | 78.05% | 0.19 | 6 | 35 | 85.37% | 0.20 |
| 1 | 12 | 29 | 70.73% | 0.36 | 8 | 33 | 80.49% | 0.37 | 9 | 32 | 78.05% | 0.37 | 7 | 34 | 82.93% | 0.40 |
| 1.3 | 10 | 31 | 75.61% | 0.53 | 9 | 32 | 78.05% | 0.53 | 16 | 25 | 60.98% | 0.52 | 11 | 30 | 73.17% | 0.57 |
| 1.8 | 17 | 23 | 57.50% | 0.65 | 13 | 27 | 67.50% | 0.67 | 12 | 28 | 70.00% | 0.68 | 10 | 30 | 75.00% | 0.74 |
| 2.5 | 15 | 26 | 63.41% | 0.79 | 15 | 26 | 63.41% | 0.80 | 19 | 22 | 53.66% | 0.81 | 18 | 23 | 56.10% | 0.87 |
| 3.5 | 20 | 21 | 51.22% | 0.91 | 18 | 23 | 56.10% | 0.92 | 30 | 11 | 26.83% | 0.87 | 31 | 10 | 24.39% | 0.93 |
| 5 | 28 | 13 | 31.71% | 0.98 | 29 | 12 | 29.27% | 0.98 | 24 | 17 | 41.46% | 0.97 | 33 | 8 | 19.51% | 0.98 |
| 7 | 37 | 4 | 9.76% | 1.00 | 37 | 4 | 9.76% | 1.00 | 36 | 5 | 12.20% | 1.00 | 37 | 4 | 9.76% | 1.00 |
| (b) WTP | No | Yes | P(Yes) | Cum | No | Yes | P(Yes) | Cum | No | Yes | P(Yes) | Cum | No | Yes | P(Yes) | Cum |
| 0.8 | 4 | 33 | 89.19% | 0.22 | 1 | 36 | 97.30% | 0.22 | 6 | 31 | 83.78% | 0.19 | 3 | 34 | 91.89% | 0.20 |
| 1 | 10 | 27 | 72.97% | 0.40 | 6 | 31 | 83.78% | 0.41 | 5 | 32 | 86.49% | 0.38 | 3 | 34 | 91.89% | 0.41 |
| 1.3 | 7 | 25 | 78.13% | 0.57 | 6 | 26 | 81.25% | 0.57 | 8 | 24 | 75.00% | 0.53 | 5 | 27 | 84.38% | 0.57 |
| 1.8 | 11 | 20 | 64.52% | 0.70 | 7 | 24 | 77.42% | 0.72 | 4 | 27 | 87.10% | 0.69 | 2 | 29 | 93.55% | 0.74 |
| 2.5 | 8 | 18 | 69.23% | 0.82 | 6 | 20 | 76.92% | 0.84 | 5 | 21 | 80.77% | 0.82 | 4 | 22 | 84.62% | 0.87 |
| 3.5 | 6 | 10 | 62.50% | 0.89 | 5 | 11 | 68.75% | 0.91 | 6 | 10 | 62.50% | 0.88 | 7 | 9 | 56.25% | 0.93 |
| 5 | 21 | 13 | 38.24% | 0.97 | 22 | 12 | 35.29% | 0.98 | 17 | 17 | 50.00% | 0.98 | 26 | 8 | 23.53% | 0.98 |
| 7 | 31 | 4 | 11.43% | 1.00 | 32 | 3 | 8.57% | 1.00 | 32 | 3 | 8.57% | 1.00 | 31 | 4 | 11.43% | 1.00 |
| hs = husband single; ws = wife single; hj = husband joint; wj = wife joint | ||||||||||||||||
| Single Interview | Joint interview | ||||
| husband | husband | ||||
| bidLo1 | -0.341 | *** | bidLo1 | -0.523 | *** |
| (0.072) | (0.105) | ||||
| income1 | 0.171 | * | income1 | 0.339 | *** |
| (0.094) | (0.114) | ||||
| mun1 | 0.325 | mun1 | 0.443 | ||
| (0.245) | (0.316) | ||||
| fam1 | 0.316 | *** | fam1 | 0.664 | *** |
| (0.114) | (0.159) | ||||
| resy1_h | 0.009 | resy1_h | 0.030 | *** | |
| (0.007) | (0.009) | ||||
| age1_h | 0.017 | * | age1_h | 0.005 | |
| (0.009) | (0.011) | ||||
| edu1_h | 0.118 | *** | edu1_h | 0.113 | ** |
| (0.037) | (0.045) | ||||
| lab1_h | 0.088 | ** | lab1_h | 0.167 | *** |
| (0.037) | (0.049) | ||||
| famrkt1_h | 1.163 | *** | famrkt1_h | 1.424 | *** |
| (0.352) | (0.473) | ||||
| socac1_h | 0.935 | *** | socac1_h | 0.345 | |
| (0.244) | (0.326) | ||||
| orlochea1_hs | 0.011 | * | orlochea1_hj | 0.003 | |
| (0.005) | (0.006) | ||||
| orloccli1_hs | 0.016 | ** | orloccli1_hj | 0.024 | *** |
| (0.006) | (0.008) | ||||
| orheacli1_hs | -0.011 | * | orheacli1_hj | -0.019 | ** |
| (0.006) | (0.008) | ||||
| purcfv1 | 0.401 | ** | purcfv1 | 0.332 | |
| (0.192) | (0.233) | ||||
| _cons | -6.740 | *** | _cons | -6.978 | *** |
| (1.198) | (1.473) | ||||
| wife | wife | ||||
| bidLo1 | -0.269 | *** | bidLo1 | -0.689 | *** |
| (0.068) | (0.105) | ||||
| income1 | 0.272 | *** | income1 | 0.401 | *** |
| (0.086) | (0.112) | ||||
| mun1 | 0.887 | *** | mun1 | 0.735 | ** |
| (0.264) | (0.320) | ||||
| fam1 | 0.449 | *** | fam1 | 0.444 | *** |
| (0.116) | (0.133) | ||||
| resy1_w | 0.029 | *** | resy1_w | 0.027 | *** |
| (0.008) | (0.010) | ||||
| age1_w | -0.011 | age1_w | -0.006 | ||
| (0.009) | (0.012) | ||||
| edu1_w | -0.007 | edu1_w | 0.108 | ** | |
| (0.042) | (0.051) | ||||
| lab1_w | 0.069 | * | lab1_w | 0.107 | ** |
| (0.037) | (0.049) | ||||
| famrkt1_w | 0.805 | *** | famrkt1_w | 0.819 | ** |
| (0.313) | (0.381) | ||||
| socac1_w | 0.467 | * | socac1_w | 0.146 | |
| (0.245) | (0.308) | ||||
| orlochea1_ws | -0.011 | ** | orlochea1_wj | -0.014 | ** |
| (0.005) | (0.006) | ||||
| orloccli1_ws | 0.001 | orloccli1_wj | -0.003 | ||
| (0.005) | (0.006) | ||||
| orheacli1_ws | 0.048 | *** | orheacli1_wj | 0.033 | *** |
| (0.008) | (0.009) | ||||
| purcfv1 | 0.195 | purcfv1 | 0.752 | *** | |
| (0.167) | (0.228) | ||||
| _cons | -5.417 | *** | _cons | -7.342 | *** |
| (1.194) | (1.660) | ||||
| rho | -10.368 | rho | -0.111 | ||
| (36.040) | (0.333) | ||||
| obs. | 327 | obs. | 327 | ||
| Wald 2(28) | 178.34 | Wald 2(28) | 143.4 | ||
| LL | -144.79 | LL | -112.397 | ||
| LR 2(1) rho | 25.409 | LR 2(1) rho | 0.109 | ||
| Figures inbrackets are standard errors.∗,∗∗, and∗∗∗represent significance at the 10%, 5%, and 1% levels, respectively. LHS: 1=Yes; 0=No | |||||
| Single interview | Joint interview | ||||
| husband | husband | ||||
| bidLo2 | -0.465 | *** | bidLo2 | -0.782 | *** |
| (0.117) | (0.259) | ||||
| income2 | 0.488 | *** | income2 | 0.947 | *** |
| (0.167) | (0.313) | ||||
| incomf_var2 | 0.377 | ** | incomf_var2 | 1.274 | *** |
| (0.183) | (0.431) | ||||
| mun2 | 0.267 | mun2 | 0.459 | ||
| (0.383) | (0.615) | ||||
| fam2 | 0.133 | fam2 | 0.918 | ** | |
| (0.166) | (0.363) | ||||
| resy2_h | 0.025 | ** | resy2_h | 0.086 | *** |
| (0.010) | (0.027) | ||||
| age2_h | 0.016 | age2_h | -0.015 | ||
| (0.012) | (0.022) | ||||
| edu2_h | 0.157 | *** | edu2_h | 0.238 | ** |
| (0.057) | (0.116) | ||||
| lab2_h | 0.067 | lab2_h | 0.211 | ** | |
| (0.052) | (0.097) | ||||
| famrkt2_h | 1.682 | *** | famrkt2_h | 2.021 | ** |
| (0.565) | (0.966) | ||||
| socac2_h | 1.658 | *** | socac2_h | 1.367 | * |
| (0.472) | (0.731) | ||||
| orlochea2_hs | -0.016 | * | orlochea2_hj | -0.029 | ** |
| (0.009) | (0.014) | ||||
| orloccli2_hs | 0.038 | *** | orloccli2_hj | 0.055 | *** |
| (0.010) | (0.018) | ||||
| orheacli2_hs | 0.018 | * | orheacli2_hj | 0.034 | ** |
| (0.010) | (0.017) | ||||
| purcfv2 | 0.272 | purcfv2 | 0.210 | ||
| (0.285) | (0.610) | ||||
| leis_var2_h | -0.228 | leis_var2_h | 0.281 | ||
| (0.163) | (0.343) | ||||
| covid2_h | 0.097 | covid2_h | 0.730 | * | |
| (0.274) | (0.440) | ||||
| hmfd2_h | 1.171 | *** | hmfd2_h | 1.323 | ** |
| (0.413) | (0.660) | ||||
| _cons | -9.138 | *** | _cons | -16.551 | *** |
| (2.127) | (5.534) | ||||
| wife | Wife | ||||
| bidLo2 | -0.260 | *** | bidLo2 | -1.046 | *** |
| (0.083) | (0.384) | ||||
| incomf2 | 0.157 | incomf2 | 1.154 | ** | |
| (0.132) | (0.486) | ||||
| incomf_var2 | 0.385 | ** | incomf_var2 | 0.053 | |
| (0.168) | (0.376) | ||||
| mun2 | 0.519 | mun2 | 1.631 | * | |
| (0.334) | (0.947) | ||||
| fam2 | 0.814 | *** | fam_2 | 1.128 | * |
| (0.261) | (0.592) | ||||
| resy2_w | 0.015 | resy2_w | 0.060 | ** | |
| (0.010) | (0.030) | ||||
| age2_w | -0.007 | age2_w | -0.035 | ||
| (0.011) | (0.031) | ||||
| edu2_w | 0.094 | * | edu2_w | 0.132 | |
| (0.057) | (0.167) | ||||
| lab2_w | 0.012 | lab2_w | 0.051 | ||
| (0.057) | (0.119) | ||||
| famrkt2_w | 0.487 | famrkt2_w | 2.343 | ** | |
| (0.376) | (1.074) | ||||
| socac2_w | 0.801 | ** | socac2_w | 2.396 | ** |
| (0.332) | (1.141) | ||||
| orlochea2_ws | -0.012 | * | orlochea2_wj | -0.035 | * |
| (0.006) | (0.018) | ||||
| orloccli2_ws | 0.012 | * | orloccli2_wj | 0.029 | * |
| (0.006) | (0.016) | ||||
| orheacli2_ws | 0.031 | *** | orheacli2_wj | 0.040 | * |
| (0.010) | (0.022) | ||||
| purcfv2 | 0.262 | purcfv2 | 1.781 | ** | |
| (0.233) | (0.701) | ||||
| leis_var2_w | -0.519 | ** | leis_var2_w | -0.295 | |
| (0.231) | (0.402) | ||||
| covid2_w | -0.218 | covid2_w | -0.017 | ||
| (0.190) | (0.424) | ||||
| hmfd2_w | 0.308 | hmfd2_w | -2.809 | ** | |
| (0.357) | (1.144) | ||||
| _cons | -6.040 | *** | _cons | -15.920 | ** |
| (2.045) | (6.486) | ||||
| rho | -0.466 | Rho | -128.133 | ||
| (0.286) | (958.71) | ||||
| obs. | 248 | obs. | 248 | ||
| Wald 2(36) | 95.89 | Wald 2(36) | 40.89 | ||
| LL | -91.011 | LL | -36.483 | ||
| LR 2(1) rho | 2.168 | LR 2(1) rho | 2.499 | ||
| Figures in brackets are standard errors. ∗ , ∗∗ , and ∗∗∗ represent significance at the 10%, 5%, and 1% levels, respectively. LHS: 1=Yes; 0=No | |||||
| Welfare | Separate Interview (1st) | Joint Interview (1st) | Separate Interview (2nd) | Joint Interview (2nd) | ||||||||||||
| measures | ws | hs | wj | hj | ws | hs | wj | Hj | ||||||||
| mean WTP | 1.168 | *** | 1.438 | *** | 1.023 | *** | 1.549 | *** | 3.464 | *** | 1.581 | *** | 2.663 | *** | 2.151 | *** |
| (0.146) | (0.154) | (0.075) | (0.147) | (0.712) | (0.189) | (0.282) | (0.287) | |||||||||
| median WTP | 0.675 | ** | 1.336 | *** | 0.906 | *** | 0.852 | *** | 2.466 | *** | 1.339 | *** | 1.927 | *** | 1.660 | *** |
| (0.310) | (0.382) | (0.141) | (0.173) | (0.723) | (0.402) | (0.390) | (0.572) | |||||||||
| ∗, ∗∗, and ∗∗∗ represent significance at the 10%, 5%, and 1% levels, respectively. Values are expressed in euro (€). | ||||||||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
