Submitted:
30 April 2023
Posted:
08 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
NOVEL β-LACTAM- β-LACTAMASE INHIBITOR AGENTS
Ceftazidime-avibactam
Ceftolozane/tazobactam
Imipenem/Cilastatin-Relabactam
Meropenem-Vaborbactam
OTHER NOVEL OR REPURPOSED ANTIBACTERIAL AGENTS
Colistin
Tigecycline
Fosfomycin
Conclusions
Future Directions
References
- GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018, 392, 1736–1788.
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018, 392, 1789–1858.
- Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022, 399, 629–655. [CrossRef] [PubMed]
- WHO publishes list of bacteria for which new antibiotics are urgently needed [Internet]. [cited 2023 Apr 21]. Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed.
- Antimicrobial resistance surveillance in Europe 2022 - 2020 data [Internet]. 2022 [cited 2023 Apr 22]. Available from: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2022-2020-data.
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Chaurasia, S.; Sivanandan, S.; Agarwal, R.; Ellis, S.; Sharland, M.; Sankar, M.J. Neonatal sepsis in South Asia: huge burden and spiralling antimicrobial resistance. BMJ. 2019, 364, k5314. [Google Scholar] [CrossRef]
- Sands, K.; Carvalho, M.J.; Portal, E.; Thomson, K.; Dyer, C.; Akpulu, C.; et al. Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries. Nat Microbiol. 2021, 6, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Bielicki, J.A.; Ahmed, A.S.M.N.U.; Islam, M.S.; Berezin, E.N.; Gallacci, C.B.; et al. Towards understanding global patterns of antimicrobial use and resistance in neonatal sepsis: insights from the NeoAMR network. Arch Dis Child. 2020, 105, 26–31. [Google Scholar] [CrossRef]
- Flannery, D.D.; Chiotos, K.; Gerber, J.S.; Puopolo, K.M. Neonatal multidrug-resistant gram-negative infection: epidemiology, mechanisms of resistance, and management. Pediatr Res. 2022, 91, 380–391. [Google Scholar] [CrossRef]
- Nordberg, V.; Quizhpe Peralta, A.; Galindo, T.; Turlej-Rogacka, A.; Iversen, A.; Giske, C.G.; et al. High proportion of intestinal colonization with successful epidemic clones of ESBL-producing Enterobacteriaceae in a neonatal intensive care unit in Ecuador. PLoS One. 2013, 8, e76597. [Google Scholar] [CrossRef]
- Mijac, V.; Brkic, S.; Milic, M.; Siljic, M.; Cirkovic, V.; Perovic, V.; et al. Intestinal Colonization of Preterm Neonates with Carbapenem Resistant Enterobacteria at Hospital Discharge. Antibiotics (Basel). 2023, 12, 284. [Google Scholar] [CrossRef]
- Seidel, J.; Haller, S.; Eckmanns, T.; Harder, T. Routine screening for colonization by Gram-negative bacteria in neonates at intensive care units for the prediction of sepsis: systematic review and meta-analysis. J Hosp Infect. 2018, 99, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Wattal, C.; Kler, N.; Oberoi, J.K.; Fursule, A.; Kumar, A.; Thakur, A. Neonatal Sepsis: Mortality and Morbidity in Neonatal Sepsis due to Multidrug-Resistant (MDR) Organisms: Part 1. Indian J Pediatr. 2020, 87, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Donà, D.; Sharland, M.; Heath, P.T.; Folgori, L. Strategic Trials to Define the Best Available Treatment for Neonatal and Pediatric Sepsis Caused by Carbapenem-resistant Organisms. Pediatr Infect Dis J. 2019, 38, 825–827. [Google Scholar] [CrossRef] [PubMed]
- Chiotos, K.; Hayes, M.; Gerber, J.S.; Tamma, P.D. Treatment of Carbapenem-Resistant Enterobacteriaceae Infections in Children. J Pediatric Infect Dis Soc. 2019, 9, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin Infect Dis. 2022, 75, 187–212. [Google Scholar]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin Infect Dis. 2022, 74, 2089–2114. [Google Scholar] [CrossRef]
- Chiusaroli, L.; Liberati, C.; Caseti, M.; Rulli, L.; Barbieri, E.; Giaquinto, C.; et al. Therapeutic Options and Outcomes for the Treatment of Neonates and Preterms with Gram-Negative Multidrug-Resistant Bacteria: A Systematic Review. Antibiotics (Basel). 2022, 11, 1088. [Google Scholar] [CrossRef]
- Ehmann, D.E.; Jahić, H.; Ross, P.L.; Gu, R.F.; Hu, J.; Kern, G.; et al. Avibactam is a covalent, reversible, non-β-lactam β-lactamase inhibitor. Proc Natl Acad Sci U S A. 2012, 109, 11663–11668. [Google Scholar] [CrossRef]
- Bonnefoy, A.; Dupuis-Hamelin, C.; Steier, V.; Delachaume, C.; Seys, C.; Stachyra, T.; et al. In vitro activity of AVE1330A, an innovative broad-spectrum non-beta-lactam beta-lactamase inhibitor. J Antimicrob Chemother. 2004, 54, 410–417. [Google Scholar] [CrossRef]
- Davido, B.; Fellous, L.; Lawrence, C.; Maxime, V.; Rottman, M.; Dinh, A. Ceftazidime-Avibactam and Aztreonam, an Interesting Strategy To Overcome β-Lactam Resistance Conferred by Metallo-β-Lactamases in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017, 61, e01008–17. [Google Scholar] [CrossRef]
- Marshall, S.; Hujer, A.M.; Rojas, L.J.; Papp-Wallace, K.M.; Humphries, R.M.; Spellberg, B.; et al. Can Ceftazidime-Avibactam and Aztreonam Overcome β-Lactam Resistance Conferred by Metallo-β-Lactamases in Enterobacteriaceae? Antimicrob Agents Chemother. 2017, 61, e02243–16. [Google Scholar] [CrossRef] [PubMed]
- zavicefta-epar-product-information_en.pdf [Internet]. [cited 2022 Sep 15]. Available from: https://www.ema.europa.eu/en/documents/product-information/zavicefta-epar-product-information_en.pdf.
- avycaz_pi.pdf [Internet]. [cited 2022 Sep 15]. Available from: https://www.rxabbvie.com/pdf/avycaz_pi.pdf.
- plc A. Allergan Announces FDA Approval of AVYCAZ® (ceftazidime and avibactam) for Pediatric Patients [Internet]. [cited 2022 Sep 18]. Available from: https://www.prnewswire.com/news-releases/allergan-announces-fda-approval-of-avycaz-ceftazidime-and-avibactam-for-pediatric-patients-300813714.html.
- B D, Lm M, E C, J G. Update on the role of ceftazidime-avibactam in the management of carbapenemase-producing Enterobacterales. Future microbiology [Internet]. 2020 Dec [cited 2022 Sep 16];15. Available from: https://pubmed.ncbi.nlm.nih.gov/32301348/. /, 2022.
- Sy, S.K.B.; Zhuang, L.; Sy, S.; Derendorf, H. Clinical Pharmacokinetics and Pharmacodynamics of Ceftazidime-Avibactam Combination: A Model-Informed Strategy for its Clinical Development. Clin Pharmacokinet. 2019, 58, 545–564. [Google Scholar] [CrossRef] [PubMed]
- van Duin, D.; Bonomo, R.A. Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-generation β-Lactam/β-Lactamase Inhibitor Combinations. Clin Infect Dis. 2016, 63, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.S.; Armstrong, J.; Arrieta, A.; Bishai, R.; Das, S.; Delair, S.; et al. Phase I Study Assessing the Pharmacokinetic Profile, Safety, and Tolerability of a Single Dose of Ceftazidime-Avibactam in Hospitalized Pediatric Patients. Antimicrob Agents Chemother. 2016, 60, 6252–6259. [Google Scholar] [CrossRef] [PubMed]
- Franzese, R.C.; McFadyen, L.; Watson, K.J.; Riccobene, T.; Carrothers, T.J.; Vourvahis, M.; et al. Population Pharmacokinetic Modeling and Probability of Pharmacodynamic Target Attainment for Ceftazidime-Avibactam in Pediatric Patients Aged 3 Months and Older. Clin Pharmacol Ther. 2022, 111, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Esposito, P.; Sbrana, F.; Di Toro, A.; Gombos, S.; Tascini, C. Ceftazidine-avibactam salvage therapy in newborn with KPC-producing Klebsiella pneumoniae invasive infections. Minerva Anestesiol. 2019, 85, 804–805. [Google Scholar] [CrossRef] [PubMed]
- Asfour, S.S.; Alaklobi, F.A.; Abdelrahim, A.; Taha, M.Y.; Asfour, R.S.; Khalil, T.M.; et al. Intravenous Ceftazidime-Avibactam in Extremely Premature Neonates With Carbapenem-Resistant Enterobacteriaceae: Two Case Reports. J Pediatr Pharmacol Ther. 2022, 27, 192–197. [Google Scholar] [CrossRef]
- 34. Nascimento A da S, Passaro MF, Silva PS de S, Rodriguez SF, Martins MK, Oliveira SCP, et al. Off-Label Use of Ceftazidime-Avibactam in a Premature Infant With Multidrug-Resistant Klebsiella pneumoniae Infection: A Case Report. J Pharm Pract. 2022, 8971900221087131.
- Coskun Y, Atici S. Successful Treatment of Pandrug-resistant Klebsiella pneumoniae Infection With Ceftazidime-avibactam in a Preterm Infant: A Case Report. Pediatr Infect Dis J. 2020, 39, 854–856. [Google Scholar] [CrossRef]
- Iosifidis E, Chorafa E, Agakidou E, Kontou A, Violaki A, Volakli E, et al. Use of Ceftazidime-avibactam for the Treatment of Extensively drug-resistant or Pan drug-resistant Klebsiella pneumoniae in Neonates and Children <5 Years of Age. Pediatr Infect Dis J. 2019, 38, 812–815. [Google Scholar]
- Melania Degli Antoni, Angeliki Kontou, Argiro Ftergioti, Kaliopi Pantzartzi, Maria Kourti, Eleni Agakidou, Charalampos Zarras, Elias Iosifidis, Kosmas Sarafidis, Emmanuel Roilides. Off-label use of Ceftazidime-avibactam in premature neonates: a real-life experience. In Copenhagen, Denmark; 2023.
- Pfizer. A PHASE 2A, 2-PART, OPEN-LABEL, NON-RANDOMIZED, MULTICENTER, SINGLE AND MULTIPLE DOSE TRIAL TO EVALUATE PHARMACOKINETICS, SAFETY AND TOLERABILITY OF CEFTAZIDIME AND AVIBACTAM IN NEONATES AND INFANTS FROM BIRTH TO LESS THAN 3 MONTHS OF AGE WITH SUSPECTED OR CONFIRMED INFECTIONS DUE TO GRAM-NEGATIVE PATHOGENS REQUIRING INTRAVENOUS ANTIBIOTIC TREATMENT [Internet]. clinicaltrials.gov; 2022 Sep [cited 2022 Sep 14]. Report No.: study/NCT04126031. Available from: https://clinicaltrials.gov/ct2/show/study/NCT04126031. 0412.
- Karampatakis, T.; Tsergouli, K.; Behzadi, P. Carbapenem-Resistant Klebsiella pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options. Antibiotics (Basel). 2023, 12, 234. [Google Scholar] [CrossRef] [PubMed]
- Galani, I.; Karaiskos, I.; Souli, M.; Papoutsaki, V.; Galani, L.; Gkoufa, A.; et al. Outbreak of KPC-2-producing Klebsiella pneumoniae endowed with ceftazidime-avibactam resistance mediated through a VEB-1-mutant (VEB-25), Greece, September to October 2019. Euro Surveill. 2020, 25, 2000028. [Google Scholar] [CrossRef]
- Di Bella, S.; Giacobbe, D.R.; Maraolo, A.E.; Viaggi, V.; Luzzati, R.; Bassetti, M.; et al. Resistance to ceftazidime/avibactam in infections and colonisations by KPC-producing Enterobacterales: a systematic review of observational clinical studies. J Glob Antimicrob Resist. 2021, 25, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Moyá, B.; Zamorano, L.; Juan, C.; Ge, Y.; Oliver, A. Affinity of the new cephalosporin CXA-101 to penicillin-binding proteins of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010, 54, 3933–3937. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.C.; Fiorenza, M.A.; Estrada, S.J. Ceftolozane/Tazobactam: A Novel Cephalosporin/β-Lactamase Inhibitor Combination. Pharmacotherapy. 2015, 35, 701–715. [Google Scholar] [CrossRef] [PubMed]
- Lizza, B.D.; Betthauser, K.D.; Ritchie, D.J.; Micek, S.T.; Kollef, M.H. New Perspectives on Antimicrobial Agents: Ceftolozane-Tazobactam. Antimicrob Agents Chemother. 2021, 65, e0231820. [Google Scholar] [CrossRef] [PubMed]
- Yahav, D.; Giske, C.G.; Grāmatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-Lactam-β-Lactamase Inhibitor Combinations. Clin Microbiol Rev. 2020, 34, e00115-20. [Google Scholar] [CrossRef]
- 206829lbl.pdf [Internet]. [cited 2022 Oct 17]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/206829lbl.pdf.
- Commissioner O of the. FDA approves new treatment for hospital-acquired and ventilator-associated bacterial pneumonia [Internet]. FDA. FDA; 2020 [cited 2022 Oct 17]. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-hospital-acquired-and-ventilator-associated-bacterial-pneumonia. /: Oct 17]. Available from: https.
- zerbaxa-epar-product-information_en.pdf [Internet]. [cited 2022 Oct 17]. Available from: https://www.ema.europa.eu/en/documents/product-information/zerbaxa-epar-product-information_en.pdf.
- Ang, J.Y.; Arrieta, A.; Bradley, J.S.; Zhang, Z.; Yu, B.; Rizk, M.L.; et al. Ceftolozane/Tazobactam in Neonates and Young Infants: The Challenges of Collecting Pharmacokinetics and Safety Data in This Vulnerable Patient Population. Am J Perinatol. 2021, 38, 804–809. [Google Scholar] [CrossRef]
- Roilides, E.; Ashouri, N.; Bradley, J.S.; Johnson, M.G.; Lonchar, J.; Su, F.H.; et al. Safety and Efficacy of Ceftolozane/Tazobactam Versus Meropenem in Neonates and Children With Complicated Urinary Tract Infection, Including Pyelonephritis: A Phase 2, Randomized Clinical Trial. Pediatr Infect Dis J. 2023, 42, 292–298. [Google Scholar] [CrossRef]
- Motsch, J.; Murta de Oliveira, C.; Stus, V.; Köksal, I.; Lyulko, O.; Boucher, H.W.; et al. RESTORE-IMI 1: A Multicenter, Randomized, Double-blind Trial Comparing Efficacy and Safety of Imipenem/Relebactam vs Colistin Plus Imipenem in Patients With Imipenem-nonsusceptible Bacterial Infections. Clin Infect Dis. 2020, 70, 1799–1808. [Google Scholar] [CrossRef]
- Bradley, J.S.; Makieieva, N.; Tøndel, C.; Roilides, E.; Kelly, M.S.; Patel, M.; et al. 1159. Pharmacokinetics, Safety, and Tolerability of Imipenem/Cilastatin/Relebactam in Pediatric Participants With Confirmed or Suspected Gram-negative Bacterial Infections: A Phase 1b, Open-label, Single-Dose Clinical Trial. Open Forum Infectious Diseases. 2021, 8(Supplement_1), S671. [Google Scholar] [CrossRef]
- Lomovskaya, O.; Sun, D.; Rubio-Aparicio, D.; Nelson, K.; Tsivkovski, R.; Griffith, D.C.; et al. Vaborbactam: Spectrum of Beta-Lactamase Inhibition and Impact of Resistance Mechanisms on Activity in Enterobacteriaceae. Antimicrob Agents Chemother. 2017, 61, e01443–17. [Google Scholar] [CrossRef] [PubMed]
- Tsivkovski, R.; Lomovskaya, O. Biochemical Activity of Vaborbactam. Antimicrob Agents Chemother. 2020, 64, e01935–19. [Google Scholar] [CrossRef] [PubMed]
- Novelli, A.; Del Giacomo, P.; Rossolini, G.M.; Tumbarello, M. Meropenem/vaborbactam: a next generation β-lactam β-lactamase inhibitor combination. Expert Rev Anti Infect Ther. 2020, 18, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.R.; Kline, E.G.; Jones, C.E.; Morder, K.T.; Mettus, R.T.; Doi, Y.; et al. Effects of KPC Variant and Porin Genotype on the In Vitro Activity of Meropenem-Vaborbactam against Carbapenem-Resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2019, 63, e02048–18. [Google Scholar] [CrossRef] [PubMed]
- Tumbarello, M.; Raffaelli, F.; Cascio, A.; Falcone, M.; Signorini, L.; Mussini, C.; et al. Compassionate use of meropenem/vaborbactam for infections caused by KPC-producing Klebsiella pneumoniae: a multicentre study. JAC Antimicrob Resist. 2022, 4, dlac022. [Google Scholar] [CrossRef]
- VABOMERE (meropenem and vaborbactam) for injection.pdf [Internet]. [cited 2022 Sep 24]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209776lbl.pdf.
- vaborem-epar-product-information_en.pdf [Internet]. [cited 2022 Sep 24]. Available from: https://www.ema.europa.eu/en/documents/product-information/vaborem-epar-product-information_en.pdf.
- v_12.0_Breakpoint_Tables.pdf [Internet]. [cited 2022 Oct 4]. Available from: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf.
- Hanretty, A.M.; Kaur, I.; Evangelista, A.T.; Moore, W.S.; Enache, A.; Chopra, A. , et al. Pharmacokinetics of the Meropenem Component of Meropenem-Vaborbactam in the Treatment of KPC-Producing Klebsiella pneumoniae Bloodstream Infection in a Pediatric Patient. Pharmacotherapy. 2018, 38, e87–91. [Google Scholar] [CrossRef]
- Gainey, A.B.; Burch, A.K.; Brownstein, M.J.; Brown, D.E.; Fackler, J.; Horne, B.; et al. Combining bacteriophages with cefiderocol and meropenem/vaborbactam to treat a pan-drug resistant Achromobacter species infection in a pediatric cystic fibrosis patient. Pediatr Pulmonol. 2020, 55, 2990–2994. [Google Scholar] [CrossRef]
- Rempex (a wholly owned subsidiary of Melinta Therapeutics, Inc.). An Open Label, Dose-finding, Pharmacokinetics, Safety, and Tolerability Study of a Single Dose Infusion of VABOMERE (Meropenem-Vaborbactam) in Pediatric Subjects From Birth to Less Than 18 Years of Age With Serious Bacterial Infections [Internet]. clinicaltrials.gov; 2021 Aug [cited 2022 Sep 29]. Report No.: NCT02687906. Available from: https://clinicaltrials.gov/ct2/show/NCT02687906. 0268.
- Diak ILMerrem, I.V. (meropenem for injection).
- Lutsar, I.; Chazallon, C.; Trafojer, U.; de Cabre, V.M.; Auriti, C.; Bertaina, C.; et al. Meropenem vs standard of care for treatment of neonatal late onset sepsis (NeoMero1): A randomised controlled trial. PLoS One. 2020, 15, e0229380. [Google Scholar] [CrossRef]
- Germovsek, E.; Lutsar, I.; Kipper, K.; Karlsson, M.O.; Planche, T.; Chazallon, C.; et al. Plasma and CSF pharmacokinetics of meropenem in neonates and young infants: results from the NeoMero studies. J Antimicrob Chemother. 2018, 73, 1908–1916. [Google Scholar] [CrossRef]
- Ganguly, S.; Edginton, A.N.; Gerhart, J.G.; Cohen-Wolkowiez, M.; Greenberg, R.G.; Gonzalez, D.; et al. Physiologically Based Pharmacokinetic Modeling of Meropenem in Preterm and Term Infants. Clin Pharmacokinet. 2021, 60, 1591–1604. [Google Scholar] [CrossRef]
- Bergen, P.J.; Li, J.; Rayner, C.R.; Nation, R.L. Colistin methanesulfonate is an inactive prodrug of colistin against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006, 50, 1953–1958. [Google Scholar] [CrossRef]
- Matzneller, P.; Strommer, S.; Drucker, C.; Petroczi, K.; Schörgenhofer, C.; Lackner, E.; et al. Colistin Reduces LPS-Triggered Inflammation in a Human Sepsis Model In Vivo: A Randomized Controlled Trial. Clin Pharmacol Ther. 2017, 101, 773–781. [Google Scholar] [CrossRef]
- Nakwan, N.; Usaha, S.; Chokephaibulkit, K.; Villani, P.; Regazzi, M.; Imberti, R. Pharmacokinetics of Colistin Following a Single Dose of Intravenous Colistimethate Sodium in Critically Ill Neonates. Pediatr Infect Dis J. 2016, 35, 1211–1214. [Google Scholar] [CrossRef] [PubMed]
- Antachopoulos, C.; Geladari, A.; Landersdorfer, C.B.; Volakli, E.; Ilia, S.; Gikas, E.; et al. Population Pharmacokinetics and Outcomes of Critically Ill Pediatric Patients Treated with Intravenous Colistin at Higher Than Recommended Doses. Antimicrob Agents Chemother. 2021, 65, e00002–21. [Google Scholar] [CrossRef] [PubMed]
- Chin, M.K.Y.; Hsia, Y.; Goossens, H.; Versporten, A.; Bielicki, J.; Sharland, M.; et al. Evidence of Dose Variability and Dosing Below the FDA and EMA Recommendations for Intravenous Colistin (Polymyxin E) Use in Children and Neonates. Pediatr Infect Dis J. 2020, 39, 1032–1034. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.H.; Tsai, C.M.; Wu, T.H.; Wu, H.Y.; Chung, M.Y.; Chen, C.C.; et al. Colistin inhalation monotherapy for ventilator-associated pneumonia of Acinetobacter baumannii in prematurity. Pediatr Pulmonol. 2014, 49, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Antachopoulos, C.; Karvanen, M.; Iosifidis, E.; Jansson, B.; Plachouras, D.; Cars, O.; et al. Serum and cerebrospinal fluid levels of colistin in pediatric patients. Antimicrob Agents Chemother. 2010, 54, 3985–3987. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin Infect Dis. 2022, 75, 187–212. [Google Scholar]
- Nakwan, N.; Chokephaibulkit, K.; Imberti, R. The Use of Colistin for the Treatment of Multidrug-resistant Gram-negative Infections in Neonates and Infants: A Review of the Literature. Pediatr Infect Dis J. 2019, 38, 1107–1112. [Google Scholar] [CrossRef]
- Stein, G.E.; Babinchak, T. Tigecycline: an update. Diagn Microbiol Infect Dis. 2013, 75, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubi, S.; Zekiy, A.O.; Krutova, M.; Gholami, M.; Kouhsari, E.; Sholeh, M.; et al. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: narrative review. Eur J Clin Microbiol Infect Dis. 2022, 41, 1003–1022. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Castanheira, M.; Flamm, R.K.; Mendes, R.E.; Farrell, D.J.; Jones, R.N. Tigecycline activity tested against carbapenem-resistant Enterobacteriaceae from 18 European nations: results from the SENTRY surveillance program (2010-2013). Diagn Microbiol Infect Dis. 2015, 83, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Khare, V. Study on MICs of Tigecycline in Clinical Isolates of Carbapenem Resistant Enterobacteriaceae (CRE) at a Tertiary Care Centre in North India. JCDR [Internet]. 2017 [cited 2022 Aug 30]; Available from: http://jcdr.net/article_fulltext.asp?issn=0973-709x&year=2017&volume=11&issue=3&page=DC18&issn=0973-709x&id=9629.
- Chiotos, K.; Hayes, M.; Gerber, J.S.; Tamma, P.D. Treatment of Carbapenem-Resistant Enterobacteriaceae Infections in Children. J Pediatric Infect Dis Soc. 2020, 9, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Sheu, C.C.; Chang, Y.T.; Lin, S.Y.; Chen, Y.H.; Hsueh, P.R. Infections Caused by Carbapenem-Resistant Enterobacteriaceae: An Update on Therapeutic Options. Frontiers in Microbiology [Internet]. 2019 [cited 2022 Aug 30];10. Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2019.00080. /.
- Ni, W.; Han, Y.; Liu, J.; Wei, C.; Zhao, J.; Cui, J.; et al. Tigecycline Treatment for Carbapenem-Resistant Enterobacteriaceae Infections: A Systematic Review and Meta-Analysis. Medicine. 2016, 95, e3126. [Google Scholar] [CrossRef] [PubMed]
- tygacil-epar-product-information_en.pdf [Internet]. [cited 2022 Aug 30]. Available from: https://www.ema.europa.eu/en/documents/product-information/tygacil-epar-product-information_en.pdf.
- Research C for DE and. FDA Drug Safety Communication: FDA warns of increased risk of death with IV antibacterial Tygacil (tigecycline) and approves new Boxed Warning. FDA [Internet]. 2019 Jun 21 [cited 2023 Feb 27]; Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-warns-increased-risk-death-iv-antibacterial-tygacil-tigecycline. /.
- Mastrolia, M.V.; Galli, L.; De Martino, M.; Chiappini, E. Use of tigecycline in pediatric clinical practice. Expert Rev Anti Infect Ther. 2017, 15, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Iosifidis, E.; Violaki, A.; Michalopoulou, E.; Volakli, E.; Diamanti, E.; Koliouskas, D.; et al. Use of Tigecycline in Pediatric Patients With Infections Predominantly Due to Extensively Drug-Resistant Gram-Negative Bacteria. J Pediatric Infect Dis Soc. 2017, 6, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Sharland, M.; Rodvold, K.A.; Tucker, H.R.; Baillon-Plot, N.; Tawadrous, M.; Hickman, M.A.; et al. Safety and Efficacy of Tigecycline to Treat Multidrug-resistant Infections in Pediatrics: An Evidence Synthesis. Pediatr Infect Dis J. 2019, 38, 710–715. [Google Scholar] [CrossRef]
- Purdy, J.; Jouve, S.; Yan, J.L.; Balter, I.; Dartois, N.; Cooper, C.A.; et al. Pharmacokinetics and safety profile of tigecycline in children aged 8 to 11 years with selected serious infections: a multicenter, open-label, ascending-dose study. Clin Ther. 2012, 34, 496–507. [Google Scholar] [CrossRef]
- Falagas, M.; Karageorgopoulos, D.; Dimopoulos, G. Clinical Significance of the Pharmacokinetic and Pharmacodynamic Characteristics of Tigecycline. CDM. 2009, 10, 13–21. [Google Scholar] [CrossRef]
- Mukker, J.K.; Singh, R.P.; Derendorf, H. Determination of Atypical Nonlinear Plasma–Protein-Binding Behavior of Tigecycline Using an In Vitro Microdialysis Technique. Journal of Pharmaceutical Sciences. 2014, 103, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Rodvold, K.A.; Gotfried, M.H.; Cwik, M.; Korth-Bradley, J.M.; Dukart, G.; Ellis-Grosse, E.J. Serum, tissue and body fluid concentrations of tigecycline after a single 100 mg dose. J Antimicrob Chemother. 2006, 58, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- McGovern, P.C.; Wible, M.; El-Tahtawy, A.; Biswas, P.; Meyer, R.D. All-cause mortality imbalance in the tigecycline phase 3 and 4 clinical trials. Int J Antimicrob Agents. 2013, 41, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Leng, B.; Yan, G.; Wang, C.; Shen, C.; Zhang, W.; Wang, W. Dose optimisation based on pharmacokinetic/pharmacodynamic target of tigecycline. J Glob Antimicrob Resist. 2021, 25, 315–22. [Google Scholar] [CrossRef] [PubMed]
- Zha, L.; Pan, L.; Guo, J.; French, N.; Villanueva, E.V.; Tefsen, B. Effectiveness and Safety of High Dose Tigecycline for the Treatment of Severe Infections: A Systematic Review and Meta-Analysis. Adv Ther. 2020, 37, 1049–1064. [Google Scholar] [CrossRef]
- Chiotos, K.; Hayes, M.; Gerber, J.S.; Tamma, P.D. Treatment of Carbapenem-Resistant Enterobacteriaceae Infections in Children. J Pediatric Infect Dis Soc. 2019, 9, 56–66. [Google Scholar] [CrossRef]
- Ramirez, J.; Dartois, N.; Gandjini, H.; Yan, J.L.; Korth-Bradley, J.; McGovern, P.C. Randomized phase 2 trial to evaluate the clinical efficacy of two high-dosage tigecycline regimens versus imipenem-cilastatin for treatment of hospital-acquired pneumonia. Antimicrob Agents Chemother. 2013, 57, 1756–1762. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Yang, J.F.; Ni, Y.H.; Ye, W.F.; Wang, J.; Wu, M.L. Retrospective analysis of tigecycline shows that it may be an option for children with severe infections. Acta Paediatr. 2016, 105, e480–e484. [Google Scholar] [CrossRef]
- Mastrolia, M.V.; Galli, L.; De Martino, M.; Chiappini, E. Use of tigecycline in pediatric clinical practice. Expert Rev Anti Infect Ther. 2017, 15, 605–612. [Google Scholar] [CrossRef]
- Iosifidis, E.; Violaki, A.; Michalopoulou, E.; Volakli, E.; Diamanti, E.; Koliouskas, D.; et al. Use of Tigecycline in Pediatric Patients With Infections Predominantly Due to Extensively Drug-Resistant Gram-Negative Bacteria. J Pediatric Infect Dis Soc. 2017, 6, 123–128. [Google Scholar] [CrossRef]
- Sharland, M.; Rodvold, K.A.; Tucker, H.R.; Baillon-Plot, N.; Tawadrous, M.; Hickman, M.A.; et al. Safety and Efficacy of Tigecycline to Treat Multidrug-resistant Infections in Pediatrics: An Evidence Synthesis. Pediatr Infect Dis J. 2019, 38, 710–715. [Google Scholar] [CrossRef] [PubMed]
- İpek, M.; Gunel, M.; Ozbek, E. Tigecycline Use in Neonates: 5-Year Experience of a Tertiary Center. J Pediatr Infect Dis. 2019, 14, 103–107. [Google Scholar]
- Zhu, Z.; Yu, Q.; Qi, G.; Yang, J.; Ni, Y.; Ruan, W.; et al. Tigecycline-Induced Tooth Discoloration in Children Younger than Eight Years. Antimicrob Agents Chemother. 65, e00854-21. [CrossRef]
- Critically important antimicrobials for human medicine : 6th revision [Internet]. [cited 2023 Apr 21]. Available from: https://www.who.int/publications-detail-redirect/9789241515528.
- Castañeda-García, A.; Blázquez, J.; Rodríguez-Rojas, A. Molecular Mechanisms and Clinical Impact of Acquired and Intrinsic Fosfomycin Resistance. Antibiotics (Basel). 2013, 2, 217–236. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Giannopoulou, K.P.; Kokolakis, G.N.; Rafailidis, P.I. Fosfomycin: use beyond urinary tract and gastrointestinal infections. Clin Infect Dis. 2008, 46, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Karageorgopoulos, D.E.; Wang, R.; Yu, X.H.; Falagas, M.E. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J Antimicrob Chemother. 2012, 67, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Kowalska-Krochmal, B.; Mączyńska, B.; Rurańska-Smutnicka, D.; Secewicz, A.; Krochmal, G.; Bartelak, M.; et al. Assessment of the Susceptibility of Clinical Gram-Negative and Gram-Positive Bacterial Strains to Fosfomycin and Significance of This Antibiotic in Infection Treatment. Pathogens. 2022, 11, 1441. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, G.; Koulenti, D.; Parker, S.L.; Roberts, J.A.; Arvaniti, K.; Poulakou, G. Intravenous fosfomycin for the treatment of multidrug-resistant pathogens: what is the evidence on dosing regimens? Expert Rev Anti Infect Ther. 2019, 17, 201–210. [Google Scholar] [CrossRef]
- Williams, P.C.M.; Waichungo, J.; Gordon, N.C.; Sharland, M.; Murunga, S.; Kamau, A.; et al. The potential of fosfomycin for multi-drug resistant sepsis: an analysis of in vitro activity against invasive paediatric Gram-negative bacteria. J Med Microbiol. 2019, 68, 711–719. [Google Scholar] [CrossRef]
- Thomson, K.M.; Dyer, C.; Liu, F.; Sands, K.; Portal, E.; Carvalho, M.J.; et al. Effects of antibiotic resistance, drug target attainment, bacterial pathogenicity and virulence, and antibiotic access and affordability on outcomes in neonatal sepsis: an international microbiology and drug evaluation prospective substudy (BARNARDS). Lancet Infect Dis. 2021, 21, 1677–1688. [Google Scholar] [CrossRef]
- Obiero, C.W.; Williams, P.; Murunga, S.; Thitiri, J.; Omollo, R.; Walker, A.S.; et al. Randomised controlled trial of fosfomycin in neonatal sepsis: pharmacokinetics and safety in relation to sodium overload. Arch Dis Child. 2022, 107, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Manolis, E.; Pons, G. Proposals for model-based paediatric medicinal development within the current European Union regulatory framework. Br J Clin Pharmacol. 2009, 68, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Allegaert, K.; van den Anker, J. Neonates are not just little children and need more finesse in dosing of antibiotics. Acta Clin Belg. 2019, 74, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Jacqz-Aigrain, E.; Kaguelidou, F.; van den Anker, J.N. How to optimize the evaluation and use of antibiotics in neonates. Pediatr Clin North Am. 2012, 59, 1117–1128. [Google Scholar] [CrossRef]
- Smits, A.; Annaert, P.; Cavallaro, G.; De Cock, P.A.J.G.; de Wildt, S.N.; Kindblom, J.M.; et al. Current knowledge, challenges and innovations in developmental pharmacology: A combined conect4children Expert Group and European Society for Developmental, Perinatal and Paediatric Pharmacology White Paper. Br J Clin Pharmacol. 2022, 88, 4965–4984. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
