Submitted:
16 January 2025
Posted:
17 January 2025
You are already at the latest version
Abstract
Background/Objectives: In recent years, strategies for improving outcomes in preterm neonates have been implemented in various aspects of neonatal care. This study aims to determine the prevalence, microbiology, and outcomes of late-onset sepsis (LOS) and the incidence of other morbidities in very preterm neonates following the implementation of specific infection control, enteral feeding, and ventilation strategies. Methods: This study retrospectively compared the morbidity and mortality of neonates with a gestational age <32 weeks over two periods. A series of changes were introduced between these periods, including restrictive use of antibiotics, aggressive enteral feeding, and wider use of non-invasive ventilation modalities. Results: A total of 310 neonates were included, 163 in period A (2010-2014), and 147 in period B (2018-2022). The incidence of LOS was 24% and 18%, and of multiple LOS episodes, 26% and 11% in periods A and B, respectively. TPN duration and gestational age were independent predictors of LOS in both periods. The rate of fungal infections declined from 9.2% to 0.7%. Full enteral nutrition in period B was achieved after a median of 7.5 days, compared with 10 days (p=0.001), resulting in fewer days of parenteral nutrition (TPN) (p=0.008). Episodes of feeding intolerance and NEC I significantly reduced (p<0.001). Incidence of intraventricular hemorrhage significantly decreased. Conclusions: Candida infections were almost completely eliminated. The incidence of LOS and multiple LOS episodes decreased. Early full enteral nutrition was achieved without adverse effects, and fewer episodes of food intolerance were observed. Candida elimination appears feasible when antibiotic stewardship is implemented in conjunction with other interventions in a NICU.
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study population
2.2. Definitions
2.3. Differences in practice between the two time periods
3. Statistical analysis
4. Results
4.1. Neonatal and obstetrics characteristics
4.2. Antibiotics
4.3. Late-onset infections
4.4. Enteral feeding
4.5. Respiratory support
4.6. Neonatal morbidities and mortality
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ohuma, E.O.; Moller, A.B.; Bradley, E.; Chakwera, S.; Hussain-Alkhateeb, L.; Lewin, A.; Okwaraji, Y.B.; Mahanani, W.R.; Johansson, E.W.; Lavin, T.; et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: a systematic analysis. Lancet. 2023, 402, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.; Valencia, C.M.; Soma-Pillay, P.; Luyt, K.; Jacobsson, B.; Shennan, A.; FIGO Preterm Birth Committee. Effective and simple interventions to improve outcomes for preterm infants worldwide: The FIGO PremPrep-5 initiative. Int J Gynaecol Obstet 2024, 165, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Isayama, T.; Iwami, H.; McDonald, S.; Beyene, J. Association of Noninvasive Ventilation Strategies With Mortality and Bronchopulmonary Dysplasia Among Preterm Infants: A Systematic Review and Meta-analysis. JAMA. 2016, 316, 611–24. [Google Scholar] [CrossRef] [PubMed]
- Aliaga, S.; Clark, R.H.; Laughon, M.; Walsh, T.J.; Hope, W.W.; Benjamin, D.K.; Kaufman, D.; Arrieta, A.; Benjamin, D.K. Jr.; Smith, P.B. Changes in the incidence of candidiasis in neonatal intensive care units. Pediatrics. 2014, 133, 236–42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Klinger, G.; Bromiker, R.; Zaslavsky-Paltiel, I.; Klinger, S.; Sokolover, N.; Lerner-Geva, L.; Reichman, B.; ISRAEL NEONATAL NETWORK. Late-Onset Sepsis in Very Low Birth Weight Infants. Pediatrics 2023, 152, e2023062223. [Google Scholar] [CrossRef] [PubMed]
- Alexander, V.N.; Northrup, V.; Bizzarro, M.J. Antibiotic exposure in the newborn intensive care unit and the risk of necrotizing enterocolitis. J Pediatr. 2011, 159, 392–7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Flannery, D.D.; Edwards, E.M.; Coggins, S.A.; Horbar, J.D.; Puopolo, K.M. Late-Onset Sepsis Among Very Preterm Infants. Pediatrics 2022, 150, e2022058813. [Google Scholar] [CrossRef] [PubMed]
- Coggins, S.A.; Glaser, K. Updates in Late-Onset Sepsis: Risk Assessment, Therapy, and Outcomes. Neoreviews. 2022, 23, 738–755. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rallis, D.; Giapros, V.; Serbis, A.; Kosmeri, C.; Baltogianni, M. Fighting Antimicrobial Resistance in Neonatal Intensive Care Units: Rational Use of Antibiotics in Neonatal Sepsis. Antibiotics (Basel). 2023, 12, 508. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chu, M.; Lin, J.; Wang, M.; Liao, Z.; Cao, C.; Hu, M.; Ding, Y.; Liu, Y.; Yue, S. Restrictive Use of Empirical Antibiotics Is Associated with Improved Short Term Outcomes in Very Low Birth Weight Infants: A Single Center, Retrospective Cohort Study from China. Antibiotics (Basel). 2023, 12, 741. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Rose, D.U.; Ronchetti, M.P.; Santisi, A.; Bernaschi, P.; Martini, L.; Porzio, O.; Dotta, A.; Auriti, C. Stop in Time: How to Reduce Unnecessary Antibiotics in Newborns with Late-Onset Sepsis in Neonatal Intensive Care. Trop Med Infect Dis. 2024, 9, 63. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zini, T.; Miselli, F.; D'Esposito, C.; Fidanza, L.; Cuoghi Costantini, R.; Corso, L.; Mazzotti, S.; Rossi, C.; Spaggiari, E.; Rossi, K.; et al. Sustaining the Continued Effectiveness of an Antimicrobial Stewardship Program in Preterm Infants. Trop Med Infect Dis. 2024, 9, 59. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, W.; Zhang, L.; Li, S.; Yan, W.; Bai, R.; Yang, Z.; Shi, J.; Yuan, J.; Yang, C.; Cai, W.; et al. Reduction of Infection in Neonatal Intensive Care Units Using the Evidence-based Practice for Improving Quality (REIN-EPIQ) Study Group. Early Antibiotic Use and Neonatal Outcomes Among Preterm Infants Without Infections. Pediatrics. 2023, 151, e2022059427. [Google Scholar] [CrossRef] [PubMed]
- Ting, J.Y.; Synnes, A.; Roberts, A.; Deshpandey, A.; Dow, K.; Yoon, E.W.; Lee, K.S.; Dobson, S.; Lee, S.K.; Shah, P.S.; Canadian Neonatal Network Investigators. Association Between Antibiotic Use and Neonatal Mortality and Morbidities in Very Low-Birth-Weight Infants Without Culture-Proven Sepsis or Necrotizing Enterocolitis. JAMA Pediatr 2016, 170, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Esaiassen, E.; Fjalstad, J.W.; Juvet, L.K.; van den Anker, J.N.; Klingenberg, C. Antibiotic exposure in neonates and early adverse outcomes: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2017, 72, 1858–1870. [Google Scholar] [CrossRef] [PubMed]
- Dyar, O.J.; Huttner, B.; Schouten, J.; Pulcini, C.; ESGAP (ESCMID Study Group for Antimicrobial stewardship). What is antimicrobial stewardship? Clin Microbiol Infect. 2017, 23, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Notarbartolo, V.; Badiane, B.A.; Insinga, V.; Giuffrè, M. Antimicrobial Stewardship: A Correct Management to Reduce Sepsis in NICU Settings. Antibiotics (Basel). 2024, 13, 520. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- otten, C.M.; McDonald S, Stoll B, Goldberg RN, Poole K, Benjamin DK Jr; National Institute for Child Health and Human Development Neonatal Research Network. The association of third-generation cephalosporin use and invasive candidiasis in extremely low birth-weight infants. Pediatrics 2006, 118, 717–22. [CrossRef] [PubMed]
- Hou, S.; Wang, X.; Yu, Y.; Ji, H.; Dong, X.; Li, J.; Li, H.; He, H.; Li, Z.; Yang, Z.; et al. Invasive fungal infection is associated with antibiotic exposure in preterm infants: a multi-centre prospective case-control study. J Hosp Infect. 2023, 134, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Haddadin, Y.; Annamaraju, P.; Regunath, H. Central Line–Associated Blood Stream Infections. Available online: https://www.ncbi.nlm.nih.gov /books/NBK430891/ (accessed on January 9, 2025).
- Starr, R.; De Jesus, O.; Shah, S.D.; Borger, J. Periventricular and Intraventricular Hemorrhage. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538310/ (accessed on January 9, 2025).
- Higgins, R.D.; Jobe, A.H.; Koso-Thomas, M.; Bancalari, E.; Viscardi, R.M.; Hartert, T.V.; Ryan, R.M.; Kallapur, S.G.,.; Steinhorn, R.H.; Konduri, G.G.; et al. Bronchopulmonary Dysplasia: Executive Summary of a Workshop. J Pediatr 2018, 197, 300–308. [CrossRef] [PubMed] [PubMed Central]
- Patel, R.M.; Ferguson, J.; McElroy, S.J.; Khashu, M.; Caplan, M.S. Defining necrotizing enterocolitis: current difficulties and future opportunities. Pediatr Res. 2020, 88, 10–15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chiang, M.F.; Quinn, G.E.; Fielder, A.R.; Ostmo, S.R.; Paul Chan, R.V.; Berrocal, A.; Binenbaum, G.; Blair, M.; Peter Campbell, J.; Capone, A. Jr.; et al. International Classification of Retinopathy of Prematurity, Third Edition. Ophthalmology. 2021, 128, e51–e68. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Romeo, D.M.; Cowan, F.M.; Haataja, L.; Ricci, D.; Pede, E.; Gallini, F.; Cota, F.; Brogna, C.; Vento, G.; Romeo, M.G.; et al. Hammersmith Infant Neurological Examination for infants born preterm: predicting outcomes other than cerebral palsy. Dev Med Child Neurol. 2021, 63, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Guidelines for Acute Care of the Neonate, 26th edition (2018-2019); Fernandes, C.J., Pammi, M., Katakam, L., et al., Eds.; Baylor College of Medicine: Houston, 2014. [Google Scholar]
- Altman, D.G. Sample Size. In Practical Statistics for Medical Research; Altman, D.G., Ed.; Chapman & Hall: London, UK, 1991; pp. 455–460. [Google Scholar]
- El Manouni El Hassani, S.; Berkhout, D.J.C.; Niemarkt, H.J.; Mann, S.; de Boode, W.P.; Cossey, V.; Hulzebos, C.V.; van Kaam, A.H.; Kramer, B.W.; van Lingen, R.A.; et al. Risk Factors for Late-Onset Sepsis in Preterm Infants: A Multicenter Case-Control Study. Neonatology. 2019, 116, 42–51. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shah, J.; Jefferies, A.L.; Yoon, E.W.; Lee, S.K.; Shah, P.S.; Canadian Neonatal Network. Risk Factors and Outcomes of Late-Onset Bacterial Sepsis in Preterm Neonates Born at < 32 Weeks' Gestation. Am J Perinatol. 2015, 32, 675–82. [Google Scholar] [CrossRef] [PubMed]
- Boghossian, N.S.; Page, G.P.; Bell, E.F.; Stoll, B.J.; Murray, J.C.; Cotten, C.M.; Shankaran, S.; Walsh, M.C.; Laptook, A.R.; Newman, N.S.; et al.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network Late-onset sepsis in very low birth weight infants from singleton and multiple-gestation births. J Pediatr. 2013, 162, 1120-4, 1124.e1. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Kelly, E.; Luu, T.M.; Ye, X.Y.; Ting, J.; Shah, P.S.; Lee, S.K. Fungal infection and neurodevelopmental outcomes at 18-30 months in preterm infants. Front Pediatr. 2023, 11, 1145252. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cantey, J.B.; Pyle, A.K.; Wozniak, P.S.; Hynan, L.S.; Sánchez, P.J. Early Antibiotic Exposure and Adverse Outcomes in Preterm, Very Low Birth Weight Infants. J Pediatr. 2018, 203, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Puopolo, K.M.; Benitz, W.E.; Zaoutis, T.E.; COMMITTEE ON FETUS AND NEWBORN; COMMITTEE ON INFECTIOUS DISEASES. Management of Neonates Born at ≤34 6/7 Weeks' Gestation With Suspected or Proven Early-Onset Bacterial Sepsis. Pediatrics 2018, 142, e20182896. [Google Scholar] [CrossRef] [PubMed]
- Ting, J.Y.; Roberts, A.; Synnes, A.; Canning, R.; Bodani, J.; Monterossa, L.; Shah, P.S.; Canadian Neonatal Network Investigators. Invasive Fungal Infections in Neonates in Canada: Epidemiology and Outcomes. Pediatr. Infect. Dis. J. 2018, 37, 1154–1159. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.S.; Benjamin, D.K., Jr.; Smith, P.B. The epidemiology and diagnosis of invasive candidiasis among premature infants. Clin. Perinatol. 2015, 42, 105–117. [Google Scholar] [CrossRef]
- Chang, Y.J.; Choi, I.R.; Shin, W.S.; Lee, J.H.; Kim, Y.K.; Park, M.S. The control of invasive Candida infection in very low birth weight infants by reduction in the use of 3rd generation cephalosporin. Korean J Pediatr. 2013, 56, 68–74. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, J.; Jiang, Y.; Wei, B.; Ding, Y.; Xu, S.; Qin, P.; Fu, J. Epidemiology of and risk factors for neonatal candidemia at a tertiary care hospital in western China. BMC Infect. Dis. 2016, 16, 700. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Primers, 2018, 4, 18026. [Google Scholar] [CrossRef]
- Saiman, L.; Ludington, E.; Pfaller, M.; Rangel-Frausto, S.; Wiblin, R.T.; Dawson, J.; Blumberg, H.M.; Patterson, J.E.; Rinaldi, M.; Edwards, J.E.; et al. Risk factors for candidemia in Neonatal Intensive Care Unit patients. The National Epidemiology of Mycosis Survey study group. Pediatr. Infect. Dis. J. 2000, 19, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Menezes, R.P.; Ferreira, I.C.D.S.; Lopes, M.S.M.; de Jesus, T.A.; de Araújo, L.B.; Santos Pedroso, R.D.; Röder, D.V.D.B. Epidemiological indicators and predictors of lethality associated with fungal infections in a NICU: A historical series. J. Pediatr. 2024, 100, 267–276. [Google Scholar] [CrossRef]
- Fu, J.; Wang, X.; Wei, B.; Jiang, Y.; Chen, J. Risk factors and clinical analysis of candidemia in very-low-birth-weight neonates. Am. J. Infect. Control. 2016, 44, 1321–1325. [Google Scholar] [CrossRef]
- Junqueira, J.C.; Mylonakis, E. Editorial: Candida biofilms. Front. Microbiol. 2023, 13, 1128600. [Google Scholar] [CrossRef] [PubMed]
- Wijaya, M.; Halleyantoro, R.; Kalumpiu, J.F. Biofilm: The invisible culprit in catheter-induced candidemia. AIMS Microbiol. 2023, 9, 467–485. [Google Scholar] [CrossRef]
- Willems, H.M.E.; Stultz, J.S.; Coltrane, M.E.; Fortwendel, J.P.; Peters, B.M. Disparate Candida albicans Biofilm Formation in Clinical Lipid Emulsions Due to Capric Acid-Mediated Inhibition. Antimicrob. Agents Chemother. 2019, 63, e01394-19. [Google Scholar] [CrossRef]
- Guducuoglu, H.; Gultepe, B.; Otlu, B.; Bektas, A.; Yildirim, O.; Tuncer, O.; Berktas, M. Candida albicans outbreak associated with total parenteral nutrition in the neonatal unit. Indian. J. Med. Microbiol. 2016, 34, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.; Greenough, A. The prevention and management strategies for neonatal chronic lung disease. Expert Rev Respir Med. 2023, 17, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Kaltsogianni, O.; Dassios, T.; Greenough, A. Neonatal respiratory support strategies-short and long-term respiratory outcomes. Front Pediatr. 2023, 11, 1212074. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thoene, M.; Anderson-Berry, A. Early Enteral Feeding in Preterm Infants: A Narrative Review of the Nutritional, Metabolic, and Developmental Benefits. Nutrients. 2021, 13, 2289. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Terefe, A.; Demtse, A.; Abebe, F.; Mislu, E.; Tachbele, E. Predictors of time to full enteral feeding in low birth weight neonates admitted to neonatal intensive care unit: a prospective follow up study. BMC Pediatr. 2024, 24, 64. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Young, L.; Oddie, S.J.; McGuire, W. Delayed introduction of progressive enteral feeds to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev. 2022, 1, CD001970. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dorling, J.; Abbott, J.; Berrington, J.; Bosiak, B.; Bowler, U.; Boyle, E.; Embleton, N.; Hewer, O.; Johnson, S.; Juszczak, E.; et al. ; Controlled Trial of Two Incremental Milk-Feeding Rates in Preterm Infants. N Engl J Med. 2019, 381, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Leaf, A.; Dorling, J.; Kempley, S.; McCormick, K.; Mannix, P.; Linsell, L.; Juszczak, E.; Brocklehurst, P.; Abnormal Doppler Enteral Prescription Trial Collaborative Group. Early or delayed enteral feeding for preterm growth-restricted infants: a randomized trial. Pediatrics 2012, 129, e1260-8. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.; Young, L.; McGuire, W. Delayed introduction of progressive enteral feeds to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev. 2014, CD001970. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Sousa, J.C.S.; de Carvalho, A.V.D.; Monte de Prada, L.C.; Marinho, A.P.; de Lima, K.F.; Macedo, S.K.O.; Santos, C.D.P.; da Câmara, S.M.A.; Barreto, A.C.D.N.G.; Pereira, S.A. Nutritional Factors Associated with Late-Onset Sepsis in Very Low Birth Weight Newborns. Nutrients 2021, 14, 196. [Google Scholar] [CrossRef] [PubMed]
- Sohn, A.H.; Garrett, D.O.; Sinkowitz-Cochran, R.L.; Grohskopf, L.A.; Levine, G.L.; Stover, B.H.; Siegel, J.D.; Jarvis, W.R.; Pediatric Prevention Network. Prevalence of nosocomial infections in neonatal intensive care unit patients: Results from the first national point-prevalence survey. J Pediatr 2001, 139, 821–7. [Google Scholar] [CrossRef] [PubMed]
- Kawagoe, J.Y.; Segre, C.A.; Pereira, C.R.; Cardoso, M.F.; Silva, C.V.; Fukushima, J.T. Risk factors for nosocomial infections in critically ill newborns: a 5-year prospective cohort study. Am J Infect Control. 2001, 29, 109–14. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, R.; Scarrow, E.; Hornik, C.; Greenberg, R.G. Neonatal invasive candidiasis: Updates on clinical management and prevention. Lancet Child Adolesc. Health 2022, 6, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Chernikova, D.A.; Madan, J.C.; Housman, M.L.; Zain-Ul-Abideen, M.; Lundgren, S.N.; Morrison, H.G.; Sogin, M.L.; Williams, S.M.; Moore, J.H.; Karagas, M.R.; et al. The premature infant gut microbiome during the first 6 weeks of life differs based on gestational maturity at birth. Pediatr Res. 2018, 84, 71–79. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arboleya, S.; Sánchez, B.; Milani, C.; Duranti, S.; Solís, G.; Fernández, N.; de los Reyes-Gavilán, C.G.; Ventura, M.; Margolles, A.; Gueimonde, M. Intestinal microbiota development in preterm neonates and effect of perinatal antibiotics. J Pediatr. 2015, 166, 538–44. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Milburn, O.; Beiersdorfer, T.; Du, L.; Akinbi, H.; Haslam, D.B. Antibiotic exposure prevents acquisition of beneficial metabolic functions in the preterm infant gut microbiome. Microbiome. 2022, 10, 103. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Esmaeilizand, R.; Shah, P.S.; Seshia, M.; Yee, W.; Yoon, E.W.; Dow, K.; Canadian Neonatal Network Investigators. Antibiotic exposure and development of necrotizing enterocolitis in very preterm neonates. Paediatr Child Health. 2018, 23, e56–e61. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, K.; Gao, H.; Yuan, L.; Wang, L.; Deng, F. Prolonged antibiotic therapy increased necrotizing enterocolitis in very low birth weight infants without culture-proven sepsis. Front Pediatr. 2022, 10, 949830. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, W.Y.; Lo, Y.C.; Huang, P.H.; Chen, Y.X.; Tsao, P.C.; Lee, Y.S.; Jeng, M.J.; Hung, M.C. Increased antibiotic exposure in early life is associated with adverse outcomes in very low birth weight infants. J Chin Med Assoc. 2022, 85, 939–943. [Google Scholar] [CrossRef] [PubMed]
- Cotten, C.M.; Taylor, S.; Stoll, B.; Goldberg, R.N.; Hansen, N.I.; Sánchez, P.J.; Ambalavanan, N.; Benjamin, D.K. Jr.; NICHD Neonatal Research Network. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics. 2009, 123, 58–66. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vatne, A.; Hapnes, N.; Stensvold, H.J.; Dalen, I.; Guthe, H.J.; Støen, R.; Brigtsen, A.K.; Rønnestad, A.E.; Klingenberg, C.; Norwegian Neonatal Network. Early Empirical Antibiotics and Adverse Clinical Outcomes in Infants Born Very Preterm: A Population-Based Cohort. J Pediatr 2023, 253, 107–114.e5. [Google Scholar] [CrossRef] [PubMed]
- Korček, P.; Širc, J.; Berka, I.; Kučera, J.; Straňák, Z. Does perinatal management have the potential to reduce the risk of intraventricular hemorrhage in preterm infants? Front Pediatr. 2024, 12, 1361074. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gross, M.; Engel, C.; Trotter, A. Evaluating the Effect of a Neonatal Care Bundle for the Prevention of Intraventricular Hemorrhage in Preterm Infants. Children (Basel). 2021, 8, 257. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
| Parameters | Period A (n=163) | Period B (n=147) | p |
|---|---|---|---|
| Sex, male | 75 (46%) | 83 (57%) | 0.06 |
| Gestational age, weeks | 29.0±2.2 | 29.3±2.3 | 0.35 |
| Birthweight, grams | 1198±325 | 1220±367 | 0.56 |
| SGA neonates | 19 (12%) | 25 (17%) | 0.17 |
| Multiparity | 72 (44%) | 62 (42%) | 0.73 |
| Maternal age | 32.2±5.7 | 33.7±5.8 | 0.02 |
| IVF | 52 (32%) | 52 (35%) | 0.51 |
| Antenatal steroids | 114 (70%) | 124 (84%) | 0.003 |
| Maternal chorioamnionitis | 2 (2%) | 21 (15%) | <0.001 |
| PROM | 43 (26%) | 43 (29%) | 0.57 |
| Mode of delivery, vaginal | 40 (25%) | 20 (14%) | 0.02 |
| Inborn | 148 (91%) | 135 (92%) | 0.74 |
| Parameters | Period A (n=163) | Period B(n=147) | p |
|---|---|---|---|
| Full enteral feeding | 10 (6,14) | 7.5 (5,10) | 0.001 |
| Breast milk | 29 (28%) | 43 (31%) | 0.57 |
| Feeding intolerance | 61 (37%) | 20 (14%) | <0.001 |
| TPN duration, days | 10 (5,22) | 7 (5,14) | 0.008 |
| Extrauterine growth restriction | 88 (61%) | 61 (45%) | 0.01 |
| Duration of antibiotics in suspected EOS | 4±2 | 2±1 | 0.001 |
| Duration of antibiotics in suspected LOS | 5±2 | 3±1 | 0.001 |
| Duration of antibiotics in LOS | 16±4 | 11.2±4 | 0.001 |
| Central venous catheter | 50 (31%) | 57 (39%) | 0.13 |
| NEC | 68 (42%) | 29 (20%) | <0.001 |
| NEC III | 3 (2%) | 2 (1%) | 0.72 |
| Ventilation duration, days | 3 (0.1,14) | 1 (0,7.5) | 0.01 |
| Invasive ventilation | 129 (79%) | 97 (66%) | 0.009 |
| BPD | 37 (26%) | 26 (19%) | 0.18 |
| RBC transfusions at 28 days | 1 (0,2) | 1 (0,2.5) | 0.70 |
| ROP | 22 (15%) | 24 (18%) | 0.59 |
| ROP 3 | 4 (3%) | 8 (6%) | 0.20 |
| IVH | 74 (46%) | 38 (27%) | <0.001 |
| IVH III-IV | 21 (13%) | 9 (6%) | 0.04 |
| cPVL Neurolo | 6 (4%) | 2 (2%) | 0.19 |
| Neurological discharge, normal | 133 (92%) | 120 (90%) | 0.53 |
| Mortality | 18 (11%) | 12 (8%) | 0.39 |
| Parameters | Period A (n=163) | Period B(n=147) | p |
|---|---|---|---|
| EOS | 4 (2.5%) | 1 (0.7%) | 0.22 |
| LOS | 39 (24%) | 27 (18%) | 0.23 |
| Multiple LOS episodes | 10 (26%) | 3 (11%) | 0.14 |
| Polymicrobial | 5 (13%) | 1 (4%) | 0.13 |
| Gram (+) | 5 (13%) | 3 (12%) | 0.92 |
| CoNS | 18 (46%) | 14 (52%) | 0.65 |
| Gram (-) | 13 (33%) | 11 (42%) | 0.42 |
| Fungi | 15 (39%) | 1 (4%) | <0.001 |
| CLABSI | 10 (30%) | 6 (22%) | 0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
