Submitted:
27 April 2023
Posted:
28 April 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
- The elements or limits that should be considered the best execution with respect to the accuracy of the solution, the speed of convergence and the effectiveness, with the most elevated achievement rate, while supporting the FACTS devices optimization issue are explored.
- This concentrate additionally presents the benefits and drawbacks of numerous advancement procedures which have been utilized for solving FACTS devices optimization issue.
- Outline tables including the strategies applied, the test systems utilized, the types of FACTS devices examined and the helpful goals of each revised document.
- A discussion is investigated toward the finish of this work about the qualities and shortcomings of numerous enhancement strategies have been utilized for solving FACTS devices optimization issue.
- All of the questions that follow: Which FACTS devices ought to be utilized? How much ought to be used? Where would be best for them? What parameters ought to they use? How much will it cost to install them? find their answers in this review Based on different studies reported in the literature.
2. FACTS Devices
2.1. Classification of FACTS devices
2.2. Utility of FACTS Devices for power system enhancement
2.2.1. FACTS devices operations in electrical power systems
- Control of line’s power flow
- Voltage drop regulation
- FACTS shunt devices compensation
- FACTS series devices compensation
2.2.2. Power transfer capability improvement
3. Modeling of FACTS devices
4. Objectives and constraints of placement of FACTS Devices
4.1. Objective functions
- Minimization of power loss in the transmission system.
- Minimization of reactive power loss.
- Congestion management.
- Improved Power transfer capability.
4.2. Constraints of the problem
- Bus voltage and line flow
- Power flow constraints
- FACTS devices Parameters Limit Values
5. Reviews for Various Optimization Techniques in FACTS allocation problem
5.1. Summary of classical optimization techniques related to FACTS Devices optimization problem
5.2. Summary of meta heuristic methods related to FACTS Devices optimization problem

5.2.1. Evolutionary algorithms
5.2.2. Physics-based algorithms
- ALO technique
- BBO technique
- CuSO Algorithm
- FPA technique
- GBSA technique
- GSA technique
- HAS technique
- MVO Algorithm
- SA algorithm
- ASO algorithm
5.2.3. Swarm Based algorithms
- PSO technique
- WOA technique
- ABC algorithm
- CRO algorithm
- CSA technique
- CaSO algorithm
- CS algorithm
- DA technique
- BA approach
- FFA technique
- GOA technique
- GWO algorithm
- HBMO algorithm
- MFO algorithm
- BSO method
- IA approach
- SOS Algorithm
5.2.4. Other Population based algorithms
- BH algorithm
- PSOA technique
- ICA method
- SCA approach
- TLBO method
- WCA method
- BFA technique
- COA method
- TS algorithm
5.3. Summary of sensitive index methods related to FACTS Devices optimization problem
5.4. Summary of mixed methods related to FACTS Devices optimization problem
6. Discussion
7. Conclusion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
List of abbreviations
| FACTS | flexible AC transmission system | WOA | Whale Optimization Algorithm |
| TCSC | Thyristors Controlled Series Capacitor | ABC | Artificial Bee Colony |
| TCPS | Thyristor-controlled phase shifter | CRO | Chemical Reaction Optimization |
| SVC | Static var compensator | CSA | Crow Search Algorithm |
| TSC | Thyristor Switched Capacitor | CaSO | Cat Swarm Optimization |
| TCR | Thyristor controlled reactor | CS | Cuckoo search |
| TCSR | Thyristor Controlled Series Reactor | DA | Dragonfly Algorithm |
| TCPST | Thyristor Controlled Phase Shifting Transformer | BA | Bats Algorithm |
| TCPAR | Thyristor Controlled Phase Angle Regulator | FFA | Firefly algorithm |
| SSSC | Static Synchronous Series Compensator | GOA | Grasshopper optimization algorithm |
| IPC | Interphase Power Controller | GWO | Grey Wolf Optimizer |
| STATCOM | Static Synchronous Compensator | HBMO | Honey-Bee Mating Optimization |
| UPFC | Unified Power Flow Controller | MFO | Moth-Flame Optimization |
| IPFC | Interline power flow controller | BSO | Bacterial Swarm Optimization |
| UPQC | Unified Power Quality Conditioner | IA | Immune Algorithm |
| LP | linear programming | SOS | Symbiotic Organism Search |
| NLP | nonlinear programming | BH | Black Hole |
| IP | integer programming | PSOA | Parallel Seeker Optimization algorithm |
| MILP | mixed integer linear programming | ICA | Imperialistic competitive algorithm |
| MINLP | mixed integer nonlinear programming | SCA | Sine Cosine Algorithm |
| MDCP | mixed discrete continuous programming | TLBO | Teaching Learning Based Optimization |
| DP | dynamic programming | WCA | Water Cycle Algorithm |
| SQP | Sequential Quadratic Programming | BFA | Bacterial Foraging Algorithm |
| NR | Newton-Raphson | COA | Coyote Optimization Algorithm |
| MCA | Min Cut Algorithm | TS | Tabu Search |
| MIP | mixed integer programming | DLUF | Disparity Line Utilization Factor |
| DE | differential evolution | PLI | power loss index |
| GA | Genetic Algorithms | VSI | voltage sensitivity index |
| ES | Evolution Strategy | CSI | contingency severity index |
| EP | Evolutionary Programming | NSCPF | Network Structural Characteristic Participation Factor |
| GP | Genetic Programming | MLP | Maximum Loading Point |
| ALO | Ant Lion Optimization | LFI | line flow index |
| BBO | Biogeography Based Optimizer | FVSI | Fast Voltage Stability Index |
| CuSO | Curved Space Optimization | TSLSI | Total System Loss Sensitivity Indices |
| FPA | Flower Pollination Algorithm | OVL | branch overloading line |
| GBSA | Galaxy-based Search Algorithm | VLB | voltage violations buses |
| GSA | Gravitational Search Algorithm | LMP | Locational Marginal Price |
| HSA | Harmony Search Algorithm | TCI | Thermal Capacity Index |
| MVO | Multi-Verse Optimization | CCI | Contingency Capacity Index |
| SA | Simulated Annealing | VCPI | Voltage Collapse Proximity Index |
| ASO | Atom Search Optimization | LQP | Line Stability Index |
| PSO | Particle Swarm Optimization | VPSI | Voltage Power Sensitivity Index |
| WIPSO | Weight Improved PSO | CMAES | Covariance matrix adapted evolution strategy |
| HCRO | hybrid chemical reaction optimization | SPEA | Strength Pareto Evolutionary Algorithms |
| HIA | hybrid immune algorithm | MGGP | multi-gene genetic programming |
| HLSI | hybrid line Stability Index | ELPSO | Enhanced leader PSO |
| KGMO | Kinetic Gas Molecule Optimization | ||
| RCGA | Real Coded Genetic Algorithm | TTC | Total transfer capability |
| FL | Fuzzy logic | PSS | Power system stabilizer |
| CKH | chaotic krill herd | LFO | Low-frequency oscillations |
| RRA | runner root algorithm | SGGP | Single-gene genetic programming |
| VSC | Voltage Source Converter | RPC | Reactive power compensation |
| NSGAII | non-dominated sorting genetic algorithm II | VPLE | valve-point loading effects |
| MOEA | Multi-objective evolutionary algorithm | QOGWO | Quasi-opposition based Grey wolf optimization |
| OPF | Optimal Power Flow | QODE | Quasi-opposition based Differential Evolution |
| ORPD | Optimal reactive power dispatch | QOCRO | Quasi-oppositional chemical reaction optimization |
| BBBC | Big Bang Big Crunch | PS | pattern search |
| ARO | asexual reproduction optimization | BSA | backtracking search algorithm |
| GTO | Gate turn off | SCSI | single contingency sensitivity index |
| PFC | Power flow Continuation | ASI | Angle sensitivity index |
| CRC | Congestion Rent Contribution | LODFs | Line outage distribution factors |
| CCT | Critical Clearing Time | TSSA) | Tabu search and simulated annealing |
| FC-TCR | Fixed Capacitor Thyristor Controlled Reactor | POD | Power oscillation damping |
| PSB | Power System Blockset | RTDS | Real Time Digital Simulator |
References
- Hingorani, N.G.; Gyugyi, L. Understanding FACTS: Concepts and Technology of Flexible AC transmission Systems. IEEE Press: New-York, 2000. [Google Scholar]
- Marouani, I.; Guesmi, T.; Hadj Abdallah, H.; Ouali, A. Optimal Reactive Power Dispatch with SSSC Device Using NSGAII Approach. IJCSNS International Journal of Computer Science and Network Security 2010, 10. [Google Scholar]
- Radman, G.; Raje, R.S. Power flow model/calculation for power systems with multiple FACTS controllers. Electric Power Systems Research 2007, 77, 1521–1531. [Google Scholar] [CrossRef]
- Marouani, I.; Guesmi, T.; Hadj Abdallah, H.; Ouali, A. Optimal Reactive Power Dispatch Incorporating UPFC Devices using NSGA II Approach. Science Academy Transactions on Renewable Energy Systems Engineering and Technology 2011, 1. [Google Scholar]
- Marouani, I.; Guesmi, T.; Hadj Abdallah, H.; Ouali, A. Optimal cost and allocation for UPFC using HRGAPSO to improve power system security and load ability. INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENT 2011, 2, 802–813. [Google Scholar]
- Glanzmann, G. FACTS Flexible Alternating Current Transmission Systems. EEH-Power Systems Laboratory, ETH Zürich, 2005. [Google Scholar]
- Marouani, I.; Guesmi, T.; Hadj Abdallah, H.; Ouali, A. Optimal location of multi type FACTS devices for multiple contingencies using genetic algorithm. In Proceedings of the 8th International Multi-Conference on System and Devices, (SSD’2011), Sousse Tunisia; 2011. [Google Scholar]
- Marouani, I.; Guesmi, T.; Hadj Abdallah, H.; Ouali, A. Optimal Reactive Power Dispatch Considering FACTS Devices. Leonardo Journal of Sciences (LJS) 2011, 97–114. [Google Scholar]
- Hingorani, N.G. FACTS Technology and Opportunities. IEE FCATS Colloquium 1994, 1–10. [Google Scholar]
- Rezaee Jordehi, A.; Jasni, J. Approaches for FACTS Optimization Problem in Power Systems. In Proceedings of the IEEE International Power Engineering and Optimization Conference (PEOCO2012), Melaka, Malaysia, 6–7 June 2012. [Google Scholar]
- Momoh, J.A. Electric power system applications of optimization. CRC: Newyork, 2008. [Google Scholar]
- Minguez, R.; Milano, F.; Minano, R.Z.; Conejo, A.J. Optimal network placement of SVC devices. IEEE Trans. Power Syst. 2007, 22, 1851–1860. [Google Scholar] [CrossRef]
- Gitizadeh, M.; Kalantar, M. A new approach for congestion management via optimal location of FACTS devices in deregulated power systems. In Proceedings of the 2008 third international conference on electric utility deregulation and restructuring and power technologies (DRPT), April 2008; pp. 1592–1597. [Google Scholar]
- Chang, Y.C.; Chang, R.F.; Hsiao, T.Y.; Lu, C.N. Transmission system loadability enhancement study by ordinal optimization method. IEEE Trans. Power Syst. 2011, 26, 451–459. [Google Scholar] [CrossRef]
- Venkata Padmavathi, S.; Sarat, K.; Sahu, A. Modeling and Simulation of Static Var Compensator to Enhance the Power System Security. IEEE Asia Pacific Conference on Postgraduate Reseach in Microelectronics and Electronics (PrimeAsia) 2013. [Google Scholar]
- ThanhLong, D.; Yao, J.; VietAnh, T. Application of min cut algorithm for optimal location of FACTS devices considering system loadability and cost of installation. Electrical Power and Energy Systems 2014, 63, 979–987. [Google Scholar]
- Yousefi, A.; Nguyen, T.T.; Zareipour, H.; Malik, O.P. Congestion management using demand response and FACTS devices. Electrical Power and Energy Systems 2012, 37, 78–85. [Google Scholar] [CrossRef]
- Khalilpourazari, S.; Khalilpourazary, S. An efficient hybrid algorithm based on Water Cycle and Moth-Flame Optimization algorithms for solving numerical and constrained engineering optimization problems. Soft Computing 2019. [Google Scholar] [CrossRef]
- Bhattacharyya, B.; Kumar, V.G.; Kumar, S. UPFC with series and shunt FACTS controllers for the economic operation of a power system. Ain Shams Engineering Journal 2014, 5, 775–787. [Google Scholar] [CrossRef]
- Rezaee Jordehi, A.; Joorabian, M. Optimal Placement of Multi-Type FACTS Devices in Power Systems Using Evolution Strategies. In Proceedings of the 5th International Power Engineering and Optimization Conference, Shah Alam, Selangor, Malaysia, 6–7 June 2011. [Google Scholar]
- Ramasubramanian, P.; Uma Prasana, G.; Sumathi, K. Optimal Location of FACTS Devices by Evolutionary Programming Based OPF in Deregulated Power Systems. British Journal of Mathematics & Computer Science 2012, 2, 21–30. [Google Scholar]
- Shafiullah, M.; Juel Rana, M.; Shahriar, M.S.; Hasan Zahir, M.H. Low-frequency oscillation damping in the electric network through the optimal design of UPFC coordinated PSS employing MGGP. Measurement 2019, 138, 118–131. [Google Scholar] [CrossRef]
- Brindha, R.; Christy, A.A.; Kumar, A.S.; Mittal, A. Antilion optimization based placement of FACTS devices in power systems. International Journal of Pure and Applied Mathematics 2018, 118, 333–341. [Google Scholar]
- Kavitha, K.; Neela, R. Optimal allocation of multi-type FACTS devices and its effect inenhancing system security using BBO, WIPSO & PSO. Journal of Electrical Systems and Information Technology 2018, 5, 777–793. [Google Scholar]
- Farrahi-Moghaddam, F.; Nezamabadi-pour, H.; Malihe, M.F. Curved Space Optimization for Allocation of SVC in a Large Power. In Proceedings of the 6th WSEAS International Conference on Applications of Electrical Engineering, Istanbul, Turkey, 27–29 May 2007. [Google Scholar]
- Pravallika, D.L.; Rao, B.V. Flower Pollination Algorithm based optimal setting of TCSC to minimize the Transmission line losses in the Power System. Procedia Computer Science 2016, 92, 30–35. [Google Scholar] [CrossRef]
- Mishra, A.; Nagesh, V.; Kumar, G. DISPARITY LINE UTILIZATION FACTOR AND GALAXY-BASED SEARCH ALGORITHM FOR ADVANCED CONGESTION MANAGEMENT IN POWER SYSTEMS. International Journal of Technology 2016, 1, 88–96. [Google Scholar] [CrossRef]
- Sarker, J.; Goswami, S.K. Solution of multiple UPFC placement problems using Gravitational Search Algorithm. Electrical Power and Energy Systems 2014, 55, 531–541. [Google Scholar] [CrossRef]
- Dharmaraj, K.; Ravi, G. Optimal Location and Setting of FACTS Devices for Reactive Power Compensation Using Harmony Search Algorithm. Automatika 2016, 57, 881–892. [Google Scholar]
- Devarapalli, R.; Bhattacharyya, B. Power and energy system oscillation damping using multi verse optimization. SN Applied Sciences 2021, 3, 383. [Google Scholar] [CrossRef]
- Gitizadeh, M.; Kalantar, M. A New Approach for Congestion Management via Optimal Location of FACTS Devices in Deregulated Power Systems. DRPT, Nanjing, China, 6–9 April 2008. [Google Scholar]
- Amarendra, A.; Srinivas, L.R.; Rao, R.S. Security Enhancement in Power System Using FACTS Devices and Atom Search Optimization Algorithm. EAI Endorsed Transactions on Energy Web. 2021, 8, e9. [Google Scholar] [CrossRef]
- Rezaee, J.A.; Jasni, J. Parameter selection in particle swarm optimisation: a survey. J Exp Theor Artif Intell. 2013, 25, 527–542. [Google Scholar] [CrossRef]
- Raj, S.; Bhattacharyya, B. Optimal placement of TCSC and SVC for reactive power planning using Whale optimization algorithm. Swarm and Evolutionary Computation BASE DATA 2017, SWEVO 339, 12-008. [Google Scholar] [CrossRef]
- Bairu, V.; Kumar, B.V. Power System Loss Minimization by Using UPFC Placed at Optimal Location Given by Artificial Bee Colony Algorithm. International Journal of Research in Advent Technology 2019, 7. [Google Scholar] [CrossRef]
- Dutta, S. Optimal location of STATCOM using chemical reaction optimization for reactive power dispatch problem. Ain Shams Eng J 2015. [Google Scholar] [CrossRef]
- Choudhary, G.; Singhal, N.; Sajan, K.S. Optimal placement of STATCOM for improving voltage profile and reducing losses using crow search algorithm. IEEE International Conference on Control, Computing, Communication and Materials (ICCCCM) 2016. [Google Scholar]
- Kumar, G.N.; Kalavathi, M.S. Cat Swarm Optimization for placement of multiples UPFCs in voltage stability under contingency. Electrical Power and Engineering Systems 2014, 57, 97–104. [Google Scholar] [CrossRef]
- Abd-Elazim, S.M.; Ali, E.S. Optimal location of STATCOM in multimachine power system for increasing loadability by Cuckoo Search algorithm. Electrical Power and Energy Systems 2016, 80, 240–251. [Google Scholar] [CrossRef]
- Abubakar, J.; Jibri, Y.; Jimoh, B. VOLTAGE STABILITY ENHANCEMENT BY OPTIMAL SIZING AND SITING OF STATIC SYNCHRONOUS COMPENSATOR USING DRAGONFLY ALGORITHM. In Zaria Journal of Electrical Engineering Technology; Department of Electrical Engineering, Ahmadu Bello University: Zaria, Nigeria, September 2021; Volume 10, No. 2. [Google Scholar]
- Selvaganapathy, R.; Kannan, R.; Ravi, A. ALLOCATION OF FACTS DEVICES FOR POWER QUALITY IMPROVEMENT. International Journal of Electrical Engineering and Technology (IJEET) 2021, 12, 154–162. [Google Scholar]
- Vishnu, C.T.; Alivelu, M.P.; Chandram, K. Placement of IPFC for Power Loss Reduction in Transmission lines using Firefly Algorithm. IEEE, 2020; 978-1-7281-6916-3/20. [Google Scholar]
- Pratap, C.N.; Ramesh, C.P.; Sidhartha, P. Grasshopper optimization algorithm optimized multistage controller for automatic generation control of a power system with FACTS devices. Protection and Control of Modern Power Systems 2021, 6, 8. [Google Scholar]
- Ramanaiah, M.L.; Reddy, M.D. Optimal Unified Power Quality Conditioner Allocation in Distribution Systems for Loss Minimization using Grey Wolf Optimization. Int. Journal of Engineering Research and Application 2017, 7, 48–53. [Google Scholar]
- Safari, A.; Ahmadian, A.; Golkar, M.A.A. Controller Design of STATCOM for Power System Stability Improvement Using Honey Bee Mating Optimization. Journal of Applied Research and Technology 2013, 11. [Google Scholar] [CrossRef]
- Ramanaiah, M.L.; Reddy, M.D. Moth Flame Optimization Method for Unified Power Quality Conditioner Allocation. International Journal of Electrical and Computer Engineering (IJECE) 2018, 8, 530–537. [Google Scholar] [CrossRef]
- Ali, E.S.; Abd-Elazim, S.M. Coordinated design of PSSs and TCSC via bacterial swarm optimization algorithm in a multimachine power system. Electrical Power and Energy Systems 2012, 36, 84–92. [Google Scholar] [CrossRef]
- Seyed, A.B.; Amooshahi, M.K. Optimal placement of UPFC in power systems using immune algorithm. Simulation Modelling Practice and Theory 2011, 19, 1399–1412. [Google Scholar]
- Zamani, M.K.; Musirin, I.; Mustaffa, S.A.; Suliman, S.L. Optimal SVC allocation via symbiotic organisms search for voltage security improvement. TELKOMNIKA 2019, 17, 1267–1274. [Google Scholar] [CrossRef]
- Ramachandran, R.; Prakash, P.S. BHA based Optimal Transformer Tap Settings and TCSC Size in Deregulated Power Market for Transmission Congestion. IJAREEIE 2017, 6. [Google Scholar]
- Shafik, M.B.; Chen, H.; Rashed, G.I.; El-Sehiemy, R.A. Adaptive multi objective parallel seeker optimization algorithm for incorporating TCSC devices into optimal power flow framework. IEEE Access 2019. [Google Scholar] [CrossRef]
- Jordehi, A.R. Optimal allocation of FACTS devices for static security enhancement in power systems via imperialistic competitive algorithm (ICA). Appl. Soft. Comput J. 2016. [Google Scholar] [CrossRef]
- Ravisekar, R.; Srinivasan, K. OPTIMAL REACTIVE POWER DISPATCH WITH SERIES AND SHUNT FACTS DEVICES USING SINE COSINE ALGORITHM. International Journal of Advanced Research in Engineering and Technology (IJARET) 2020, 11, 90–109. [Google Scholar] [CrossRef]
- Agrawal, R.; Bharadwaji, S.K.; Kothari, D.P. Population based evolutionary optimization techniques for optimal allocation and sizing of thyristor controlled series capacitor. Journal of Electrical Systems and information technology 2018, 5, 484–501. [Google Scholar] [CrossRef]
- Lenin, K.; Reddy, B.R.; Kalavathi, M.S. Water cycle algorithm for solving optimal reactive power dispatch problem. J Eng Technol Res 2014, 2, 1–11. [Google Scholar]
- Jalilzadeh, S.; Jalilvand, A. Optimal Design of UPFC Controller for Damping Power System Oscillations by Using Bacterial Foraging Algorithm. Australian Journal of Basic and Applied Sciences 2011, 5, 457–465. [Google Scholar]
- Guesmi, T.; Alshammari, B.M.; Almalaq, Y.; Alateeq, A.; Alqunun, K. New Coordinated Tuning of SVC and PSSs in Multimachine Power System Using Coyote Optimization Algorithm. Sustainability 2021, 13, 3131. [Google Scholar] [CrossRef]
- Coronado, D.K.; Koster, O.A.; Domínguez-Navarro, J.A. Multi-objective tabu search for the location and sizing of multiple types of FACTS and DG in electrical networks. Energies 2020, 13, 2722. [Google Scholar] [CrossRef]
- Abido, M.A. Optimal power flow using tabu search algorithm. Electr. Power Compon. Syst. 2002, 30, 469–483. [Google Scholar] [CrossRef]
- Stéphane, G. Métaheuristique appliquées au placement optimal de dispositif FACTS dans un réseau électrique. Thèse de doctorat 2003. Ecole polytechnique fédérale de Lausanne. [Google Scholar]
- Balamurugan, K.; Muralisachithanandam, R.; Dharmalingam, V. Performance comparison of evolutionary programming and differential evolution approaches for social welfare maximization by placement of multi type FACTS devices in pool electricity market. Int J Electr Power Energy Syst 2015, 67, 517–528. [Google Scholar] [CrossRef]
- Lashkar Ara, A.; Kazemi, A.; Nabavi Niaki, S.A. Modelling of Optimal Unified Power Flow Controller (OUPFC) for optimal steady-state performance of power systems. Energy Convers Manag 2011, 52, 1325–1333. [Google Scholar] [CrossRef]
- Kumar Kavuturu, K.V.; Sai Tejaswi, K.N.V.; Janamala, V. Performance and security enhancement using generalized optimal unified power flow controller under contingency conditions and renewable energy penetrations. J. Electr. Syst. Inf. Technol. 2022, 9, 2–24. [Google Scholar] [CrossRef]
- Eskandar, G.S. Apport de l’UPFC à l’amélioration de la stabilité transitoire des réseaux électriques. Thèse de doctorat 2003. Université Henri Poincaré, Nancy-I, Octobre. [Google Scholar]
- Glanzmann, G. FACTS Flexible Alternating Current Transmission Systems. EEH-Power Systems Laboratory 2005. ETH Zürich, Janvier. [Google Scholar]
- Catz, E. Evolutions techniques du système de transport et de distribution d’électricité. J3eA 2006, 5, 002, France. [Google Scholar] [CrossRef]
- Duan, X.; Chen, J.; Luo, F.; Huang, H. Power Flow Control with FACTS Devices. Power Engineering Society Winter Meeting 2000, 3, 1585–1589. [Google Scholar]
- Radman, G.; Raje, R.S. Dynamic model for power systems with multiple FACTS controllers. Electric Power Systems Research 2008, 78, 361–371. [Google Scholar] [CrossRef]
- Acha, E.; Claodio, R.; Esquivel, F.; Ambbriz-Prez, H.; Angeles-Camacho, C. FACTS: Modelling and Simulation in Power Networks. Wiley, 2004. [Google Scholar]
- Mohammed, O.H.; Cheng, S.J.; Zakaria, A.Z. Steady-State Modeling of SVC and TCSC for Power Flow Analysis. In Proceedings of the International MultiConference of Engineers and Computer Scientists, IMECS, Hong Kong, 18–20 March 2009; Volume 2. [Google Scholar]
- Fuerte-Esquivel, C.R.; Acha, E.; Ambriz-Pérez, H. A thyristor controlled series compensator model for the power flow solution of practical power networks. IEEE Transactions on power systems 2000, 15, 58–64. [Google Scholar] [CrossRef]
- Zhang, X.P. Modelling of the interline power flow controller and the generalised unified power flow controller in Newton power flow. IEEE Proceedings, Generation, Transmission and Distribution 2003, 150, 268–274. [Google Scholar] [CrossRef]
- Thippana, V.C.; Alivelu, M.P.; Chandram, K. Placement of IPFC for Power Loss Reduction in Transmission lines using Firefly Algorithm. In Proceedings of the IEEE 17th India Council International Conference (INDICON); 2020. 978-1-7281-6916-3/20. [Google Scholar]
- Guesmi, T. Stabilisation et dispatching économique/environnemental des réseaux d’énergie électrique. Thèse de doctorat 2007. École Nationale d’Ingénieurs de Sfax. [Google Scholar]
- Fraga, E.S.; Yang, L.; Papageorgiou, L.G. On the modelling of valve point loadings for power electricity dispatch. Appl. Energy 2012, 91, 301–303. [Google Scholar] [CrossRef]
- Cai, L.J.; Erlich, I. Optimal choice and allocation of FACTS devices using genetic algorithms. In Proceedings of the Twelfth Intelligent Systems Application to Power Systems Conference; 2003; pp. 1–6. [Google Scholar]
- Cai, L.J.; Erlich, I. Optimal choice and allocation of FACTS devices in deregulated electricity market using genetic algorithms. In IEEE PES Power Systems Conference and Exposition; 2004; 0-7803-8718-X/04. [Google Scholar]
- Saravanan, M.; Mary, S.; Slochanal, R.; Venkatesh, P.; Prince, J.; Stephen, A. Application of particle swarm optimization technique for optimal location of FACTS devices considering cost of installation and system loadability. Electric Power Systems Research 2007, 77, 276–283. [Google Scholar] [CrossRef]
- Safdarian, A.; Firuzabad, M.F.; Aminifar, F. A novel efficient model for the power flow analysis of power systems. Turk. J. Electr. Eng. Comput. Sci. 2015, 23, 52–66. [Google Scholar] [CrossRef]
- Amarendra, A.; Srinivas, L.R.; Rao, R.S. Security Enhancement in Power System Using FACTS Devices and Atom Search Optimization Algorithm. EAI Endorsed Transactions on Energy Web 2021, 8, e9. [Google Scholar] [CrossRef]
- Seyed, M.H.; Nabavi, K.K.; Aidin Sakhavati, A.; Nahi, S. Optimal Locating and Sizing of SSSC using Genetic Algorithm in Deregulated Power Market. International Journal of Computer Applications 2011, 22, 37–41. [Google Scholar]
- Kang, T.; Yao, J.; Duong, T.; Yang, S.; Zhu, X. A hybrid approach for power system security enhancement via optimal installation of flexible AC transmission system (FACTS) devices. Energies 2017, 10, 1305. [Google Scholar] [CrossRef]
- Xiao, Y.; Song, Y.H.; Liu, C.C.; Sun, Y. Available Transfer Capability Enhancement Using FACTS Devices. IEEE Transactions on Power Systems 2003, 18, 305–312. [Google Scholar] [CrossRef]
- Ashwani, S.; Saurabh, C.; Sanjoy, P. Combined Optimal Location of FACTS Controllers and Loadability Enhancement in Competitive Electricity Markets Using MILP. IEEE, 2005. [Google Scholar]
- Bahiense, L.; Oliveira, G.; Pereira, M.; Granville, S. A mixed integer disjunctive model for transmission network expansion. IEEE Trans. Power Systems 2011, 16, 560–565. [Google Scholar] [CrossRef]
- Orfanogianni, T.; Bacher, R. Steady-State Optimization in Power Systems With Series FACTS Devices. IEEE transactions on power systems 2003, 18, 19–26. [Google Scholar] [CrossRef]
- Chang, Y.C.; Rung-Fang, C.; Tsun-Yu, H.; Lu, C.; Fellow, F. Transmission System Loadability Enhancement Study by Ordinal Optimization Method. IEEE Transactions on Power Systems 2010, 26, 451–459. [Google Scholar] [CrossRef]
- Ajami, A.; Aghajani, G.; Pourmahmood, M. Optimal Location of FACTS Devices Using Adaptive Particle Swarm Optimization Hybrid with Simulated Annealing. Journal of Electrical Engineering & Technology 2010, 5, 179–190. [Google Scholar]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv Eng Soft 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Marouani, I.; Guesmi, T.; Hadj Abdallah, H.; Badr, M.; Alshammari, B.M.; Alqunun, K.; Alshammari, A.S.; Rahmani, S. Combined Economic Emission Dispatch with and without Consideration of PV and Wind Energy by Using Various Optimization Techniques: A Review. Energies 2022, 15, 4472. [Google Scholar] [CrossRef]
- Drezewski, R.; Dziuban, G.; Karol Pajak, K. The Bio-Inspired Optimization of Trading Strategies and Its Impact on the Efficient Market Hypothesis and Sustainable Development Strategies. Sustainability 2018, 10, 1460. [Google Scholar] [CrossRef]
- Rashed, G.I.; Shaheen, H.I.; Cheng, S.J. Optimal Location and Parameter Settings of Multiple TCSCs for Increasing Power System Loadability Based on GA and PSO Techniques. In Proceedings of the Third International Conference on Natural Computation (ICNC); 2007. [Google Scholar]
- Salman, G.A.; Ali, M.H.; Ali, N.A. Implementation Optimal Location and Sizing of UPFC on Iraqi Power System Grid (132 kV) Using Genetic Algorithm. International Journal of Power Electronics and Drive System (IJPEDS) 2018, 9, 1607–1615. [Google Scholar] [CrossRef]
- Seyed, M.H.; Nabavi, K.K.; Aidin, S.; Saeid, N. Optimal Locating and Sizing of SSSC using Genetic Algorithm in Deregulated Power Market. International Journal of Computer Applications 2011, 22, 37–41. [Google Scholar]
- Gerbex, S.; Cherkaoui, R.; Germond, A.J. Optimal Location of FACTS Devices to Enhance Power System Security. In Proceedings of the IEEE Bologna PowerTech Conference, Bologna, Italy, 23–26 June 2003. [Google Scholar]
- Esmaeil Ghahremani, E.; Kamwa, I. Optimal Placement of Multiple-Type FACTS Devices to Maximize Power System Loadability Using a Generic Graphical User Interface. IEEE transactions on power systems 2012, 28, 764–778. [Google Scholar] [CrossRef]
- Marouani, I.; Guesmi, T.; Hadj Abdallah, H.; Ouali, A. Application of NSGAII Approach to Optimal Location of UPFC Devices in Electrical Power Systems. Middle-East Journal of Scientific Research 2011, 10, 592–603. [Google Scholar]
- Somasundaram, A.; Baskar, S.; Babulal, C.K.; Jeyadevi, S. Optimal siting and sizing of UPFC using evolutionary algorithms. Electrical Power and Energy Systems 2015, 69, 222–231. [Google Scholar]
- Reddy, S.S.; Kumari, M.S.; Sydulu, M. Congestion Management in Deregulated Power System by Optimal Choice and Allocation of FACTS Controllers Using Multi-Objective Genetic Algorithm. IEEE, 2010; 978-1-4244-6547-7/10. [Google Scholar]
- Shah, I.; Neha Srivastava, N.; Sarda, J. Optimal Placement of Multi-Type Facts Controllers Using Real Coded Genetic Algorithm. International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) 2016, 482–487. [Google Scholar]
- Gitizadeh, M.; Kalantar, M. Optimum allocation of FACTS devices in Fars Regional Electric Network using genetic algorithm based goal attainment. Journal of Zhejiang University SCIENCEA 2009, 10, 478–487. [Google Scholar] [CrossRef]
- Behrouz, N. Optimal Location and Sizing of IPC and SVC in Power Systems by Genetic Algorithm (GA) For Power Losses Minimization. Journal of Science and Engineering Elites 2017, 2, 102–111. [Google Scholar]
- Jigar, S.S.; Chauhan, M.J.; Pandya, V.B.; Patel, D.G. OPTIMAL LOCATION OF MULTI-TYPES OF FACTS DEVICES USING GENETIC ALGORITHM. International Journal of Research in Computer Science 2012, 2, 11–15. [Google Scholar]
- Jose, A.; Navarro, D.; Jose, L.; Bernal, A.; Alexis, D.; Requena, D.; Emilio, P.V. Optimal parameters of FACTS devices in electric power systems applying evolutionary strategies. Electrical Power and Energy Systems 2007, 29, 83–90. [Google Scholar]
- Weerakorn, O.; Peerapol, J. Optimal Allocation of FACTS Devices to Enhance Total Transfer Capability Using Evolutionary Programming. IEEE, 2005; pp. 4175–4178, 0-7803-8834-8/05. [Google Scholar]
- Nor, R.A.; Musirin, I.; Othman, M.M. Thyristor Controlled Series Compensator Planning Using Evolutionary Programming for Transmission Loss Minimization for System under Contingencies. In Proceedings of the International Conference: Electrical Energy and Industrial Electronic Systems EEIES, Penang, Malaysia, 7–8 December 2009. [Google Scholar]
- Nor, R.A.; Musirin, I.; Othman, M.M. Transmission Loss Minimization and TCSC Installation Cost using Evolutionary Programming. In Proceedings of the International Conference: Electrical Energy and Industrial Electronic Systems EEIES, Penang, Malaysia, 7–8 December 2009. [Google Scholar]
- Shahriar, M.S.; Shafiullah, M.; Pathan, M.I.H.; Sha’aban, Y.A.; Houssem, R.E.H.; Bouchekara, H.; Makbul, A.M.; Ramli, A.M.; Rahman, M.M. Stability improvement of the PSS-connected power system network with ensemble machine learning tool. Energy Reports 2022, 8, 11122–11138. [Google Scholar] [CrossRef]
- Zarkani, M.K.; Tukkee, A.S.; Alali, M.J. Optimal placement of facts devices to reduce power system losses using evolutionary algorithm. Indonesian Journal of Electrical Engineering and Computer Science 2021, 21, 1271–1278. [Google Scholar] [CrossRef]
- Balamurugan, K.; Muthukumar, K. Differential Evolution algorithm for contingency analysis-based optimal location of FACTS controllers in deregulated electricity market. Springer-Verlag GmbH Germany 2018. part of Springer Nature. [Google Scholar] [CrossRef]
- Basu, M. Optimal power flow with FACTS devices using differential evolution. Electrical Power and Energy Systems 2008, 30, 150–156. [Google Scholar] [CrossRef]
- Moazzami, M.; Shahinzadeh, H.; Gharehpetian, G.B.; Shafiei, A. Optimal TCSC placement for congestion management in deregulated power systems using antlion optimization algorithm. International Journal of Robotics and Automation (IJRA) 2009, 8, 77–88. [Google Scholar] [CrossRef]
- Kavitha, K.; Neela, R. Comparison of BBO, WIPSO & PSO techniques for the optimal placement of FACTS devices to enhance system security. Procedia Technology 2016, 25, 824–837. [Google Scholar]
- Kumar, B.R.; Kumar, S.; Kumar, L. Transmission congestion management with FACTS devices using BBO Algorithm. IEEE, 2018; 978-1-5386-7339-3/18. [Google Scholar]
- Devi, H.A.; Padma, S. Power System Security Enhancement Using Optimal Placement and Parameter Setting of Multi-FACTS devices with BBO Algorithm. International Journal of Pure and Applied Mathematics 2018, 118, 785–804. [Google Scholar]
- Karthikeyan, K.; Dhal, P.K. Transient Stability Enhancement by Optimal Location and Tuning of STATCOM using Biogeography based Optimization Technique. Indian Journal of Science and Technology 2017, 10. [Google Scholar] [CrossRef]
- Zulffli, A.; Musirin, I.; Nan, M.A.A.; Zulffli, O. Optimal voltage stability improvement under contingencies using Dlower Pollination Algorithm and thyristor controlled series capacitor. Indonisian Journal of Electrical Engineering and Computer Science 2015, 12, 2502–4752. [Google Scholar]
- Lalljith, S.; Fleming, I.; Pillay, U.; Naicker, K.; Naidoo, Z.J.; Saha, A.K. Applications of Flower Pollination Algorithm in Electrical Power Systems: A Review. IEEE Access 2021, 10, 8924–8947. [Google Scholar] [CrossRef]
- Kumara, B.S.; Suryakalavathib, M.; Kumar, G.V.N. Optimal Power Flow with Static VAR Compensator Using Galaxy based Search Algorithm to minimize Real Power Losses. Procedia Computer Science 2016, 92, 42–47. [Google Scholar] [CrossRef]
- Mishra, A.; Venkata, G.; Kumar, N. Congestion management of deregulated power systems by optimal setting of Interline Power Flow Controller using Gravitational Search algorithm. Journal of Electrical Systems and Information Technology 2017, 4, 198–212. [Google Scholar] [CrossRef]
- Akanksha Mishra, A.; Kumar, G.V.N. Congestion Management of Deregulated Power Systems by Optimal Setting of Interline Power Flow Controller using Gravitational Search Algorithm. JESIT 2016, 118, 198–212. [Google Scholar]
- Bhattacharyya, B.; Kumar, S. Loadability enhancement with FACTS devices using gravitational search algorithm. Electrical Power and Energy Systems 2016, 78, 470–479. [Google Scholar] [CrossRef]
- Bhattacharyya, B.; Kumar, S. Approach for the solution of transmission congestion with multi-type FACTS devices. IET Generation Transmission & Distribution 2016, 1–8. [Google Scholar]
- Packiasudha, M.; Suja, S.; Jerome, J. A new Cumulative Gravitational Search algorithm for optimal placement of FACT device to minimize system loss in the deregulated electrical power environment. Electrical Power and Energy Systems 2017, 84, 34–46. [Google Scholar] [CrossRef]
- Sirjani, R.; Mohamed, A.; Shareef, H. Optimal placement and sizing of Static Var Compensators in power systems using Improved Harmony Search Algorithm. Przeglad Elektrotechniczny 2011, 87, 214–218. [Google Scholar] [CrossRef]
- Ebeed, M.; Kamel, S.; Nasrat, L.S. Optimal siting and sizing of SSSC Using Improved Harmony Search Algorithm Considering Non-smooth Cost Functions. In Proceedings of the 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), Menoufia University, Egypt, 19–21 December 2017. [Google Scholar]
- Koltun, M.; Raahemifar, K. Optimal Placement and Sizing of STATCOMs in Power Systems using GHS Algorithm. In Proceedings of the IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE); 2017. [Google Scholar]
- Laifa, A.; Medoued, A. Optimal FACTS Location to Enhance Voltage Stability Using Multi-Objective Harmony Search. In Proceedings of the 3rd International Conference on Electric Power and Energy Conversion Systems, Yildiz Technical University, Istanbul, Turkey, 2–4 October 2013. [Google Scholar]
- Karthikeyan, K.; Dhal, P.K. Multi verse optimizatiom (MVO) technique based voltage stability analysis through continuation power flow in IEEE 57 bus. Energy Procedia. 2017, 117, 583–591. [Google Scholar] [CrossRef]
- Shehata, A.A.; Refaat, A.; Korovkin, N.V. Optimal Allocation of FACTS Devices based onMulti-Objective Multi-Verse Optimizer Algorithm for Multi-Objective Power System Optimization Problems. International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon); 2020. [Google Scholar]
- Gerbex, S.; Cherkaoui, R.; Germond, A.J. Optimal Location of FACTS Devices to Enhance Power System Security. In Proceedings of the IEEE Bologna PowerTech Conference, Bologna, Italy, 23–26 June 2003. [Google Scholar]
- Jordehi, A.R. Enhanced leader PSO (ELPSO): a new PSO variant for solving global optimisation problems. Appl Soft Comput 2015, 26, 401–417. [Google Scholar] [CrossRef]
- Ali, I.I. Optimal Location of SSSC Based on PSO to Improve Voltage Profile and Reduce Iraqi Grid System Losses. Engineering and Technology Journal 2017, 35. [Google Scholar] [CrossRef]
- Saravanan, M.; Slochanal, S.M.R.; Venkatesh, P.; Abraham, J.P.S. Application of particle swarm optimization technique for optimal location of FACTS devices considering cost of installation and system loadability. Electric Power Systems Research 2007, 77, 276–283. [Google Scholar] [CrossRef]
- Jammani, J.G.; Pandya, M. Coordination of SVC and TCSC for management of power flow by Particule swarm optimization. Energy Procedia 2019, 156, 321–326. [Google Scholar] [CrossRef]
- Chandra, B.S.; Visali, N. Optimal Placement of SVC with Cost Effective Function Using Particle Swarm Optimization. International Journal of Emerging Trends in Engineering Research 2013, 1. [Google Scholar]
- Jumaat, S.A.; Musirin, I. Σ-MULTI-OBJECTIVE EVOLUTIONARY PARTICLE SWARM OPTIMIZATION APPROACH FOR TRANSMISSION LOSS AND COST MINIMIZATION WITH SVC INSTALLATION. Journal of Fundamental and Applied Sciences 2018, 10, 715–728. [Google Scholar]
- Hajforoosh, S.; Seyed, M.; Nabavi, H.; Masoum, M.A.S. Optimal Particle Swarm Based Placement and Sizing of Static Synchronous Series Compensator to Maximize Social Welfare. Journal of Electrical Engineering & Technology 2012, 7, 501–512. [Google Scholar]
- Ravi, K.; Rajaram, M. Optimal location of FACTS devices using Improved Particle Swarm Optimization. Electrical Power and Energy Systems 2013, 49, 333–338. [Google Scholar] [CrossRef]
- Kavitha, K.; Neela, R. Optimal allocation of multi-type FACTS devices and its effect inenhancing system security using BBO, WIPSO & PSO. Journal of Electrical Systems and Information Technology 2018, 5, 777–793. [Google Scholar]
- Jordehi, A.R. Particle swarm optimisation (PSO) for allocation of FACTS devices in electric transmission systems: A review. Renewable and Sustainable Energy Reviews 2015, 52, 1260–1267. [Google Scholar] [CrossRef]
- Jordehi, A.R.; Jasni, J.; AbdWahab, N.; Kadir, M.Z.; Javadi, M.S. Enhanced leader PSO (ELPSO): A new algorithm for allocating distributed TCSC’s in power systems. Electrical Power and Energy Systems 2015, 64, 771–784. [Google Scholar] [CrossRef]
- Nadeem, M.; Imran, K.; Khattak, A.; Ulasyar, A.; Pal, A.; Zeb, M.Z.; Khan, A.N.; Padhee, M. Optimal Placement, Sizing and Coordination of FACTS Devices in Transmission Network Using Whale Optimization Algorithm. Energies 2020, 13, 753. [Google Scholar] [CrossRef]
- Sreejith, S.; Psimon, S.; Selvan, M.P. Optimal location of interline power flow controller in a power system network using ABC algorithm. Archives of electrical engineering 2013, 62, 91–110. [Google Scholar] [CrossRef]
- Shaik, M.R.; Reddy, A.S. Optimal Placement and sizing of FACTS Device to Overcome Contingencies in Power Systems. International conference on Signal Processing Communication, Power and Embedded System (SCOPES) 2016. [Google Scholar]
- Abac, K.; Yamaçl, V. A NEW METHOD BASED ON ARTIFICIAL BEE COLONY ALGORITHM FOR THE OPTIMAL LOCATION OF SHUNT CONNECTED FACTS DEVICES. Journal of Engineering Technology and Applied Sciences 2018, 3, 17–34. [Google Scholar]
- Kamarposhti, M.A.; Kamarposhti, K.; Shokouhandeh, H.; Colak, I.; Band, S.S.; Eguchi, K. Optimal location of FACTS devicesin order to simultaneously improving transmission losses and stability margin using Artificial bee colony Algorithm. IEEE Access 2021, 9, 125920–125929. [Google Scholar]
- Shokouhandeh, H.; Latif, S.; Sadaf Irshad, S.; Kamarposhti, M.A.; Colak, I.; Eguchi, K. Optimal Management of Reactive Power Considering Voltage and Location of Control Devices Using Artificial Bee Algorithm. Appl. Sci. 2022, 12, 27. [Google Scholar] [CrossRef]
- Rafee, S.M.; Reddy, A.S. Enhancing system loadability with multiple FACTS devices using Artificial Bee Colony Algorithm. EasyChair Preprint 2019, (No. 2069). [Google Scholar]
- Dutta, S.; Paul, S.; Roy, P.K. Optimal allocation of SVC and TCSC using quasi-oppositional chemical reaction optimization for solving multi-objective ORPD problem. Journal of Electrical Systems and Information Technology 2018, 5, 83–98. [Google Scholar] [CrossRef]
- Dutta, S.; Roy, P.K.; Nandi, D. Optimal Allocation of Static Synchronous Series Compensator Controllers using Chemical Reaction Optimization for Reactive Power Dispatch. International Journal of Energy Optimization and Engineering 2016, 5. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Shankar, G. Crow search algorithm based optimal dynamic performance control of SVC assisted SMIB system. In Proceedings of the National Power Systems Conference (NPSC), NIT Tiruchirappalli, India, 14–16 December 2018. [Google Scholar]
- Nireekshana, T.; Rao, G.K.; Raju, S.S. Available transfer capability enhancement with FACTS devices using Cat Swarm Optimization. Ain Shams Engineering Journal 2016, 7, 159–167. [Google Scholar] [CrossRef]
- Kumar, G.N. Application of Cat Swarm Optimization in testing Static Load Models for Voltage Stability. Med. J. Model. Simul. 2016, 5, 1–16. [Google Scholar]
- Taleb, M.; Salem, A.; Ayman, A.; Azma, M.A. Optimal Allocation of TCSC Using Adaptive Cuckoo Search Algorithm. IEEE, 2016; 978-1-4673-9063-7/16. [Google Scholar]
- Sekhar, A.H.; Devi, A.L. Improvement of Voltage Profile and Reducing Power System Losses in Transmission System with Multiple TCSC Firing Angle Control Model with Dragonfly Algorithm. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE). 2016, 11, 10–21. [Google Scholar] [CrossRef]
- Venugopal, D.; Jayalaxmi, A. Optimal Location of Static Var Compensator Using Bat Algorithm for the Improvement of Voltage Profile. Int. Journal of Engineering Research and Applications 2015, 5, 77–81. [Google Scholar]
- Rajasekaran, S.; Muralidharan, S. Firefly Algorithm in Determining Maximum Load Utilization Point and Its Enhancement through Optimal Placement of FACTS Device. Circuits and Systems 2016, 7, 3081–3094. [Google Scholar] [CrossRef]
- Vasavi, C.; Babu, A.N.; Sivanagaraju, S. Use of firefly algorithm for solving optimal power flow problem with static synchronous series compensator. Int. J. Innov. Res. Electr. Electron. Instrum. Control. Eng. 2014, 2, 2298–2301. [Google Scholar]
- Kaur, G.D.; Singh, H. Power Transmission Fault Analysis using the concept of Firefly Optimization Algorithm along with FACTS Devices. International Journal of Advanced Computronics and Management Studies (IJACMS) 2021, 11, 24–32. [Google Scholar]
- Sahu, P.R.; Lenka, R.K.; Khadanga, R.K.; Hota, P.K.; Panda, S.; Ustun, T.S. Power System Stability Improvement of FACTS Controller and PSS Design: A Time-Delay Approach. Sustainability 2022, 14, 14649. [Google Scholar] [CrossRef]
- Ayman Alhajji, A.; Hssein, M.E.; Kamel, S.; Alyami, S. Optimal power flow solution with embedded center-node Unified Power Flow Controller using an adaptive Grasshopper Optimization Algorithm. IEEE Access 2020, 8. [Google Scholar]
- Sunday, Y.S.; Ubeh, O.P.; Saidu, A.A.; Fahad, A. Grey wolf optimizer based optimal placement of multiple facts devices in the transmission system under dynamic loading system. Journal of Engineering Studies and Research 2021, 27, 132–143. [Google Scholar] [CrossRef]
- Amin, A.; Kamel, S.; Ebeed, M. Optimal Reactive Power Dispatch Considering SSSC Using Grey Wolf Algorithm. IEEE, 2016; 978-1-4673-9063-7/16. [Google Scholar]
- Retnamony, R.; Raglend, J.; Kumari, K.; Nadu, T. Modified Grey Wolf Optimizer Used for Congestion Management in a Deregulated Power Systems. International Journal of Pure and Applied Mathematics 2017, 116, 315–326. [Google Scholar]
- Shayeghi, H.; Moradzadeh, M.; Ghasemi, A.; Vandevelde, L. Simultaneous Optimal Placement and ParameterTuning of SVC, TCSC and PSS Using Honey-Bee Mating Optimization. IEEE, 2013; 978-1-4799-2522-3/13. [Google Scholar]
- Ebeed, M.; Kamel, S.; Youssef, H. Optimal Setting of STATCOM Based on Voltage Stability Improvement and Power Loss Minimization Using Moth-flame Algorithm. IEEE, 2016; 978-1-4673-9063-7/16. [Google Scholar]
- Lu, Z.; Li, M.S.; Tang, W.J.; Wu, Q.H. Optimal Location of FACTS Devices by A Bacterial Swarming Algorithm for Reactive Power Planning. IEEE, 2007; 1-4244-1340-0/07. [Google Scholar]
- Khaleghi, M.; Farsangi, M.M.; Nezamabadi-pour, H.; Lee, K.Y. Voltage Stability Improvement by Multiobjective Placement of SVC using Modified Artificial Immune Network Algorithm. IEEE, 2009; 978-1-4244-4241-6/09. [Google Scholar]
- Prasad, D.; Vivekananda Mukherjee, V. Solution of Optimal Reactive Power Dispatch by Symbiotic Organism Search Algorithm Incorporating FACTS Devices. IETE Journal of Research 2017. [Google Scholar] [CrossRef]
- Ramachandran, R.; Arun, M. Black Hole Algorithm Implemented for Congestion Management in a Competitive Power Market. International Journal of Computer Applications 2016, 150. [Google Scholar] [CrossRef]
- Shafik, M.B.; Rashed, G.G.; El-Sehiemy, R.A.; Chen, H. Optimal sizing and setting of TCSC FACTS devices of multi-objective operational power systems using Seeker Optimization algorithm. IEEE Region Ten Symposium (Tensymp) 2018. [Google Scholar]
- Abd-Elazim, S.M.; Ali, E.S. Imperialist competitive algorithm for optimal STATCOM design in a multimachine power system. Electrical Power and Energy Systems 2016, 76, 136–146. [Google Scholar] [CrossRef]
- Kumar, S.G.; Kumar, M.K.; Kumar, L.; Kumar, S. A Simplified Sine Cosine Algorithm for the Solution of Optimal Reactive Power Dispatch. Hindawi. International Transactions on Electrical Energy Systems 2022, 2165966. [Google Scholar]
- Ravipudi, H.; Rao, V. Teaching-Learning-Based Optimization (TLBO) Algorithm And Its Engineering Applications. Springer International Publishing: Switzerland, 2016. [Google Scholar] [CrossRef]
- Agrawal, R.; Bharadwaj, S.K.; Kothari, D.P. Optimal location and Sizing of SVC considering Transmission loss and Installation cost using TLBO. IEEE, 2015; 978-1-4673-6540-6/15. [Google Scholar]
- Gautam, A.; Ibraheem, I.; Sharma, G.; Bokoro, P.N.; Ahmer, M.F. Available Transfer Capability Enhancement in Deregulated Power System through TLBO Optimised TCSC. Energies 2022, 15, 4448. [Google Scholar] [CrossRef]
- Verma, R.; Rathore, A. Optimal Placement of Facts Device Considering Voltage Stability and Losses using Teaching Learning based Optimization. J. Inst. Eng. India Ser. 2021, 102, 771–776. [Google Scholar] [CrossRef]
- Welhazi, Y.; Guesmi, T.; Abdallah, H.H. Coordinated Tuning of SVC and PSSs in Power System using Teaching Learning Based Algorithm. In Proceedings of the 2019 10th International Renewable Energy Congress (IREC); 2019. [Google Scholar]
- Khodabakhshian, A.; Esmaili, M.R.; Bornapour, M. Optimal coordinated design of UPFC and PSS for improving power system performance by using multi-objective water cycle algorithm. Electrical Power and Energy Systems 2016, 83, 124–133. [Google Scholar] [CrossRef]
- Belwin Edward, B.J. An enhanced bacterial foraging algorithm approach for optimal power flow problem including FACTS devices considering system loadability. ISA Transactions 2013. [Google Scholar] [CrossRef] [PubMed]
- TNVLN Kumar, T.; Satyanara, R.V.S. Enhancing Power System Security: A multi-Objective Optimal Approach to identify the location and size of SVC. IUP Journal of Electrical and Electronics Engineering 2018, 11, 45–58. [Google Scholar]
- Jaganathan, S.; Palaniswami, S. Optimal Power Dispatch Incorporating UPFC Devices Using Foraging Algorithms Voltage Stability and Reliability Analysis. International Journal of Scientific & Engineering Research 2012, 3. [Google Scholar]
- Matheus, A.G.; Peres, C.W. Projeto Coordenado de Estabilizadores Controladores TCSC-POD usando o Coyote Optimization Algorithm. Automatoca 2020. [Google Scholar] [CrossRef]
- Bhasaputra, P.; Ongsakul, W. Optimal Placement of Multi-Type FACTS Devices by Hybrid TS/SA Approach. In Proceedings of the 2003 International Symposium on Circuits and Systems, ISCAS’03, 25–28 May 2003; Volume 3, pp. 375–378. [Google Scholar]
- Mori, H.; Goto, Y. A Parallel Tabu Search Based Method for Determining Optimal Allocation of FACTS in Power Systems. In Proceedings of the PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No. 00EX409); 2000; pp. 1077–1082. [Google Scholar]
- Garrido, V.M.; Montoya, O.D.; Alba, L.F.; Jimenez, D. Location of FACTS Devices in Power Systems: Application to the IEEE 9 bus System. IEEE, 2019; 978-1-7281-3646-2/19. [Google Scholar]
- Marouani, I.; Guesmi, T.; Hadj Abdallah, H. Optimal Location of Multi Type FACTS Devices for Multiple Contingencies Using Genetic Algorithms. International Journal of Energy Engineering 2012, 2, 29–35. [Google Scholar]
- Adebayo, I.G.; Bhaskhar, M.A.; Yussiff, A.A.; Jomoh, A.A. Optimal location identification of FACTS devices through Genetic Algorithm and the network Structural Characteristics Techniques. In Proceedings of the 5th International Conference on Renewable Energy Reseach and Application, Birmingham, UK, 20–23 November 2016. [Google Scholar]
- An, S.; Condren, J.; Gedra, T.W. An Ideal Transformer UPFC Model, OPF First-Order Sensitivities, and Application to Screening for Optimal UPFC Locations. IEEE Transactions on Power Systems 2007, 22, 68–75. [Google Scholar] [CrossRef]
- Bekri, O.L.; Fellah, M.K. Optimal Location of SVC and TCSC for Voltage Stability Enhancement. In Proceedings of the 4th International Power Engineering and Optimization Conference (PEOCO), Shah Alam, Selangor, Malaysia, 23–24 June 2010. [Google Scholar]
- Larki, F.; Kelk, H.M.; Pishvaei, M.; Johar, A. Optimal Location of STATCOM and SVC Based on Contingency Voltage Stability by Using Continuation Power Flow: Case Studies of Khouzestan Power Networks in Iran. In Proceedings of the Second International Conference on Computer and Electrical Engineering; 2009. 978-0-7695-3925-6/09. [Google Scholar]
- Hedi Besharat, H.; Tahar, S.A. Congestion management by determining optimal location of TCSC in deregulated power systems. Electrical Power and Energy Systems 2008, 30, 563–568. [Google Scholar] [CrossRef]
- Malival, S.N.; Chande, K.C.; Parikh, R.S. Optimal Placement of TCSC by Sensitivity Methods Using PSAT. IJSRD-International Journal for Scientific Research & Development 2014, 1. [Google Scholar]
- Nurdin, M.; Rahman, F.S.; Rahmani, R.; Hariyanto, N. Placement of Shunt VAR Compensator Based on Sensitivity Analysis. International Journal on Electrical Engineering and Informatics 2014, 6, 2. [Google Scholar] [CrossRef]
- Kumar, N.S.; Ghosh, A.; Kumar, R.V. A Novel Placement Strategy for Facts Controllers. IEEE Transactions on Power Delivery 2003, 18, 982–987. [Google Scholar]
- Mohamed, A.; Jasmon, G.B. Determining the weak segment of a power system with voltage stability considerations. Electric machines and power systems 1996, 24, 555–568. [Google Scholar] [CrossRef]
- Ghahremani, E.; Kamwa, I. Optimal Placement of Multiple-Type FACTS Devices to Maximize Power System Loadability Using a Generic Graphical User Interface. IEEE transactions on power systems 2012, 28, 764–778. [Google Scholar] [CrossRef]
- Acharya, N.; Mithulananthan, N. Locating series FACTS devices for congestion management in deregulated electricity markets. Electric Power Systems Research 2007, 77, 352–360. [Google Scholar] [CrossRef]
- Mutegi, A.M.; Kihato, P.K.; Muriithi, C.M.; Saulo, M.J. Optimal Placement of FACTS Devices using Voltage Stability Indices. In Proceedings of the Annual Conference on Sustainable Research and Innovation, 4–6 May 2016. [Google Scholar]
- Rao, V.S.; Rao, R.S. Optimal Placement of STATCOM using two stage Algorithm for Enhancing Power System Static Security. Energy Procedia 2017, 117, 575–582. [Google Scholar] [CrossRef]
- Lu, Y.; Abur, A. Static Security Enhancement via Optimal Utilization of Thyristor Controlled Series Capacitors. IEEE Power Engineering Review 2002. [Google Scholar] [CrossRef]
- Sunda, K.S.; Ravikumar, H.M. Selection of TCSC location for secured optimal power flow under normal network contingencies. Electrical Power and Energy Systems 2012, 34, 29–37. [Google Scholar]
- Singh, J.G.; Singh, S.N.; Srivastava, S.C. Enhancement of Power System Security through Optimal Placement of TCSC and UPFC. IEEE, 2007; 1-4244-1298-6/07. [Google Scholar]
- Ullah, I.; Gawlik, W.; Palensky, P. Analysis of Power Network for Line Reactance Variation to Improve Total Transmission Capacity. Energies 2016, 9, 936. [Google Scholar] [CrossRef]
- Vaidya, P.S.; Rajderkar, V.P. Optimal Location of Series FACTS Devices for Enhancing Power System Security. In Proceedings of the Fourth International Conference on Emerging Trends in Engineering & Technology; 2011. 978-0-7695-4561-5/11. [Google Scholar]
- Rani, M.; Gupta, A. Steady State Voltage Stability Enhancement of Power System Using Facts Devices. IEEE, 2014; 978-1-4799-6042-2/14. [Google Scholar]
- Albatsh, F.M.; Ahmad, S.; Mekhilef, S.; Mokhlis, H.; Hassan, M.A. Optimal Placement of Unified Power Flow Controllers to Improve Dynamic Voltage Stability Using Power System Variable Based Voltage Stability Indices. PLOS ONE 2015. [Google Scholar] [CrossRef]
- Roshan, R.; Samal, P.; Sinha, P. Optimal placement of FACTS devices in power transmission network using power stability index and fast voltage stability index. In Proceedings of the 2020 International Conference on Electrical and Electronics Engineering (ICE3); 2020. [Google Scholar]
- Amroune, M.; Sebaa, H.; Bouktir, T. Static Voltage Stability Margin Enhancement Using SVC and TCSC. World Academy of Science. Engineering and Technology International Journal of Electrical and Computer Engineering 2013, 7. [Google Scholar]
- Ratra, S.; Singh, P.; Tiwari, R. Optimal Placement of Thyristor Controlled Series Compensators for Sensitive Nodes in Transmission System Using Voltage Power Sensitivity Index. International Journal of Electrical Energy 2016, 4. [Google Scholar] [CrossRef]
- Shubhanga, K.N.; Kulkarni, A.M. Application of Structure Preserving Energy MarginSensitivity to Determine the Effectiveness of Shunt and Series FACTS Devices. IEEE Transactions on Power Systems 2002, 17, 730–738. [Google Scholar] [CrossRef]
- Dutta, S.; Kumar, P.R.; Nandi, D. Optimal location of UPFC controller in transmission network using hybrid Chemical reaction Optimization Algorithm. Electrical Power and Energy Systems 2015, 64, 194–211. [Google Scholar] [CrossRef]
- Merah, H.; Gacem, A.; Attous, D.P.; Lashab, A.; Jurado, F.; Sameh, M.A. Sizing and Sitting of Static VAR Compensator (SVC) Using Hybrid Optimization of Combined Cuckoo Search (CS) and Antlion Optimization (ALO) Algorithms. Energies 2022, 15, 4852. [Google Scholar] [CrossRef]
- Kumar, B.V.; Srikanth, N.V. A hybrid approach for optimal location and capacity of UPFC to improve the dynamic stability of the power system. Appl. Soft Comput. J. 2016. [Google Scholar] [CrossRef]
- Balamurugana, K.; Muralisachithanandama, R.; Dharmalingam, V. Performance comparison of evolutionary programming and differential evolution approaches for social welfare maximization by placement of multi type FACTS devices in pool electricity market. International Journal of Electrical Power & Energy Systems Volume 2015, 67, 517–528. [Google Scholar]
- Biplab Bhattacharyya, B.; Kumar, V.G.; Kumar, S. Fuzzy-DE approach for the optimal placement of FACTS devices to relief Congestion in a power system. International Conference on Control, Instrumentation, Energy & Communication 2014. [Google Scholar]
- Luay, G.; Ibrahim, L.G.; AL-Rubayi, R.H. Optimal placement of FACTS devices using hybrid line stability index. Journal of Engineering and Applied Sciences 2019, 14, 2739–2744. [Google Scholar]
- Inkollu, S.R.; Kota, V.R. Optimal setting of FACTS devices for voltage stability improvement using PSO adaptive GSA hybrid algorithm. Engineering Science and Technology 2016. an International Journal. [Google Scholar] [CrossRef]
- Ram, S.; Amarnath, J. Optimal Setting of IPFC for Voltage Stability Improvement using (GA-GSA) Hybrid Algorithm. Nirma University International Conference on Engineering (NUiCONE) 2013. [Google Scholar]
- Reddy, H.K.; Reddy, P.R.K.; Ganesh, V. Optimal Allocation of Multiple Facts Devices with Hybrid Techniques for Improving Voltage Stability. International Journal on Emerging Technologies 2019, 10, 76–84. [Google Scholar]
- Phadke, A.R.; Fozdar, M.; Niazi, K.R. A new multi-objective fuzzy-GA formulation for optimal placement and sizing of shunt FACTS controller. International Journal of Electrical Power & Energy Systems 2012, 40, 46–53. [Google Scholar]
- Taher, S.A.; Amooshahi, M.K. New approach for optimal UPFC placement using hybrid immune algorithm in electric power systems. International Journal of Electrical Power & Energy Systems 2012, 43, 899–909. [Google Scholar]
- Bhasaputra, P.; Ongsakul, W. OPTIMAL PLACEMENT OF MULTI-TYPE FACTS DEVICES BY HYBRID TSlSA APPROACH. IEEE, 2003; 0-7803-7761-31031. [Google Scholar]
- Chansareewittaya, S. Optimal Power Flow for Enhanced TTC with Optimal Number of SVC by using Improved Hybrid TSSA. ECTI Transactions on Computer and Information Technology (ECTI-CIT) 2019, 13, 37–48. [Google Scholar] [CrossRef]
- Kumar, B.V.; Srikanth, N.V. Optimal location and sizing of Unified Power Flow Controller (UPFC) to improve dynamic stability: A hybrid technique. International Journal of Electrical Power & Energy Systems 2015, 64, 429–438. [Google Scholar]
- Lin, W.M.; Lu, K.H.; Huang, C.H.; Ou, T.C.; Li, Y.H. Optimal Location and Capacity of STATCOM for Voltage stability Enhancement using ACO plus GA. In Proceedings of the 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Suntec Convention and Exhibition Center Singapore, 14–17 July 2009. [Google Scholar]
- Vijayakumar, B.; Rajendar, G.; Ramaiah, V. Optimal location and capacity of Unified Power Flow Controller based on chaotic krill herd blended runner root algorithm for dynamic stability improvement in power system. Int J Numer Model El. 2020, e2828. [Google Scholar]
- Sadiq, A.A.; Adamu, S.S.; Muhammad Buhari, M. Available transfer capability enhancement with FACTS using hybrid PI-PSO. Turk J Elec Eng & Comp Sci 2019, 27, 2881–2897. [Google Scholar]
- Sekhar, A.H.; Haritha, A.; Vandana, A. Hybrid Optimization Methods for Analyzing the performance of Advanced FACTS Device in Transmission System. International Journal of Scientific & Engineering Research 2020, 11. [Google Scholar]
- Ajami, A.; Aghajani, G.; Pourmahmood, M. Optimal Location of FACTS Devices Using Adaptive Particle Swarm Optimization Hybrid with Simulated Annealing. Journal of Electrical Engineering & Technology 2010, 5, 179–190. [Google Scholar]
- Kumar, B.S.; Suryakalavathi, M.; Kumar, G.V.N. Thyristor controlled series compensator based optimal reallocation of generators for contingency management. ECTI 2018, 16. [Google Scholar] [CrossRef]
- Padmavathi, V.S.; Kumar, S.S.; Jayalaxmi, A. Application of Gravitational Search Algorithm to Improve Power System Security by Optimal Placement of FACTS Devices. J. Electrical Systems. 2015, 11-3, 326–342. [Google Scholar]
- Parizad, A.; Khazali, A.; Kalantar, M. Application of HAS and GA in optimal placement of FACTS devices considering voltage stability and losses. Word Academy of Sciences Engineering Technology 2009, 32. [Google Scholar]
- Gupta, D.; Kumar, S.J. Available Transfer Capability Enhancement by FACTS Devices Using Metaheuristic Evolutionary Particle Swarm Optimization (MEEPSO) Technique. Energies 2021, 14, 869. [Google Scholar] [CrossRef]
- Tlijani, K.; Guesmi, T.; Abdallah, H.H.; Ouali, A. 0ptimal location and parameter setting of TCSC based on Sensitivity analysis. IEEE, 2012; 978-1-4673-1170-0/12. [Google Scholar]
- Tlijani, K.; Guesmi, T.; Abdallah, H.H. 0ptimal number, location and parameter setting of multiple TCSCs for security and system loadability enhancement. In Proceedings of the 10th International Multi-Conference on Systems, Signals & Devices (SSD), Hammamet, Tunisia, 18–21 March 2013. [Google Scholar]
- Kanwar, N.; Gupta, N.; Swarnkar, A. New sensitivity based approach for optimal allocation of shunt capacitors in distribution networks using PSO. Energy Procedia 2015, 75, 1153–1158. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, J.; Liu, Y. The interval sensitivity analysis and optimization of the distribution network parameters considering the load uncertainty. Int J Electr Power Energy Syst 2015, 64, 931–936. [Google Scholar] [CrossRef]
- Jordehi, A.R.; Jasni, J.; Wahab, N.; Kadir, M.Z.; Javadi, M.S. Enhanced leader PSO (ELPSO): a new algorithm for allocating distributed TCSC’s in power systems. Int J Electr Power Energy Syst 2015, 64, 771–784. [Google Scholar] [CrossRef]
- Jordehi, R.A.; Jasni, J. Parameter selection in particle swarm optimisation: a survey. J Exp Theor Artif Intell 2013, 25, 527–542. [Google Scholar] [CrossRef]
- Elsisi, M.; Soliman, M.; Aboelela, M. Bat inspired algorithm based optimal design of model predictive load frequency control. Int J Electr Power Energy Syst 2016, 83, 426–433. [Google Scholar] [CrossRef]
- Sirjani, R.; Mohamed, A.; Shareef, H. Optimal allocation of shunt Var compensators in power systems using a novel global harmony search algorithm. Int J Electr Power Energy Syst 2012, 43, 562–572. [Google Scholar] [CrossRef]
- Pal, B.B.; Biswas, P.; Mukhopadhyay, A. GA based FGP approach for optimal reactive power dispatch. In Proceedings of the first international conference on computational intelligence: modeling techniques and applications (CIMTA); 2013; pp. 464–473. [Google Scholar]
- Sutha, S.; Kamaraj, N. Optimal location of multi type facts devices for multiple contingencies using particle swarm optimization. World Acad Sci. Eng Technol 2008, 22, 791–797. [Google Scholar]
- Shaw, B.; Mukherjee, V.; Ghoshal, S.P. Solution of reactive power dispatch of power systems by an opposition-based gravitational search algorithm. Int J Electr Power Energy Syst 2014, 55, 29–40. [Google Scholar] [CrossRef]
- Abou El-Ela, A.A.; Kinawy, A.M.; El-Sehiemy, R.A.; Mouwafi, M.T. Optimal reactive power dispatch using ant colony optimization algorithm. Electr Eng 2011, 93, 103–116. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.N.; Kalavathi, M.S. Cat swarm optimization for optimal placement of multiple UPFC’s in voltage stability enhancement under contingency. Int J Electr Power Energy Syst 2014, 57, 97–104. [Google Scholar] [CrossRef]
- Mori, H.; Goto, Y. Parallel Tabu Search Based Method for Determining Optimal Allocation of FACTS in Power Systems. In Proceedings of the PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No. 00EX409); 2000; pp. 1077–1082. [Google Scholar]
- Mohammad, J.M.; Taher, N.; Jamshid, A.; Miadreza, S.K.; Joao, P.S.; Catal, A. Hybrid Optimization Algorithm to Solve the Nonconvex Multiarea Economic Dispatch Problem. IEEE Syst. J. 2018, 10, 1109. [Google Scholar]
- Soheil, D.B.; Hamdi, A.; Massimo, L.S. Hybrid Gravitational Search Algorithm-Particle Swarm Optimization with Time Varying Acceleration Coefficients for Large Scale CHPED Problem. Energy 2017, 3, 54. [Google Scholar]
- Fister, I.; Strnad, D.; Yang, X.S.; Fister, J.I. Adaptation and hybridization in nature inspired algorithms. In Adaptation and Hybridization in Computational Intelligence; Springer: Cham, Switzerland, 2015; pp. 3–50. [Google Scholar]
- Ting, T.; Yang, X.S.; Cheng, S.; Huang, K. Hybrid metaheuristic algorithms: Past, present, and future. In Recent Advances in Swarm Intelligence and Evolutionary Computation; Springer: Cham, Switzerland, 2015; pp. 71–83. [Google Scholar]







| Refs | Objectives | Devices | Methods | Test Case |
|---|---|---|---|---|
| [15] | Power system security | SVC | NR | A Standard 5-Bus Network:2G |
| [83] | To operating at a lower cost and system security | SVC, TCSC | MILP | IEEE-30 Bus |
| [84] | To increase the load capacity of the system | TCPAR, TCSC | MILP | IEEE 24 bus |
| [16] | To achieving the maximum system loadability and minimum FACTS installation cost | TCSC | MCA | IEEE 6, 30 and 118-bus. |
| [85] | Reduction of line overloads and improvement of bus voltage magnitudes | TCSC | MINLP | IEEE 9 bus system |
| [86] | Maximizing network forwarding capacity and provide a measure of FACTS ratings | TCSC, UPFC | NLP | network model consists of 37 buses |
| [17] | Reduce congestion and/or enhance network voltage security | SVC, TCSC | MIP | IEEE 30 bus system |
| [88] | Enhance the voltage profile and system security margin | SVCs, TCSCs | SQP | IEEE 14-bus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
