Submitted:
27 April 2023
Posted:
27 April 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Calculation of Signals Fundamental Component
2.1. ZSVC Measurement method
2.2. ApFFT time-shift phase difference correction
3. Fault Diagnosis Method for Stator ITSC Fault of Traction Motor
3.1. Stator ITSC fault degree index
3.2. SVM model for fault diagnosis of ITSC fault and hyper-parameters optimization
3.3. ITSC fault diagnosis procedure based on SVM model
4. EMU Electric Traction Simulation Experimental Platform
4.1. Overall design of the experimental platform
4.2. Setting ITSC faults on tested motor
4.3. Signal measurement of the tested motor
5. Analysis of ITSC Fault Diagnosis Model Based on Experimental Samples
5.1. Analysis of motor signal with ITSC fault
5.2. Analysis of ITSC fault features
5.3. Analysis of SVM ITSC Fault Diagnosis Model Performance
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Elbouchikhi,E.; Amirat, Y.; Feld, G.; Benbouzid, M. Generalized Likelihood Ratio Test Based Approach for Stator-Fault Detection in a PWM Inverter-Fed Induction Motor Drive. IEEE Trans. Ind. Electron.2019,66, 6343–6353. [CrossRef]
- Qing Wu; Nandi, S. Fast Single-Turn Sensitive Stator Interturn Fault Detection of Induction Machines Based on Positive- and Negative-Sequence Third Harmonic Components of Line Currents. IEEE Trans. Ind. Appl.2010,46,974–983. [CrossRef]
- Bouzid, M.; Champenois, G. Neural Network Based Method for the Automatic Detection of the Stator Faults of the Induction Motor. In Proceedings of the International Conference on Electrical Engineering & Software Applications; Hammamet, Tunisia, 21-23 March 2013. [CrossRef]
- Lee, S-G. A Study on Traction Motor Characteristic in EMU Train. In Proceedings of the 13th International Conference on Control, Automation and Systems, Gyeonggi-do, Korea, 22-25October 2014.
- Zhang, K.; Jiang, B.; Chen, F. Multiple-Model-Based Diagnosis of Multiple Faults With High-Speed Train Applications Using Second-Level Adaptation. IEEE Trans. Ind. Electron. 2021, 68, 6257–6266. [CrossRef]
- Chen, Z.P.; Wang, Z.; Jia, L.M.; Cai, G.Q. Analysis and Comparison of Locomotive Traction Motor Intelligent Fault Diagnosis Methods. Appl. Mech. Mater.2011, 97–98, 994–1002. [CrossRef]
- Al-Ameri, S.M.; Alawady, A.A.; Yousof, M.F.M.; Kamarudin, M.S.; Salem, A.A.; Abu-Siada, A.; Mosaad, M.I. Application of Frequency Response Analysis Method to Detect Short-Circuit Faults in Three-Phase Induction Motors. Appl. Sci.2022, 12, 2046. [CrossRef]
- Chao, C.; Wang, W.; Chen, H.; Zhang, B.; Shao, J.; Teng, W. Enhanced Fault Diagnosis Using Broad Learning for Traction Systems in High-Speed Trains. IEEE Trans. Power Electron.2020, 36, 7461–7469. [CrossRef]
- Guo, X.; Tang, Y.; Wu, M.; Zhang, Z.; Yuan, J. FPGA-Based Hardware-in-the-Loop Real-Time Simulation Implementation for High-Speed Train Electrical Traction System. IET Electr. Power Appl.2020, 14,850-858. [CrossRef]
- Kaufhold, M.; Aninger, H. Electrical Stress and Failure Mechanism of the Winding Insulation in PWM-Inverter-Fed Low-Voltage Induction Motors. IEEE Trans. Ind. Electron.2000,2, 396–402. [CrossRef]
- Mbaye, A.; Bellomo, J.P. Electrical Stresses Applied to Stator Insulation in Low-Voltage Induction Motors Fed by PWM Drives. IET Electr. Power Appl.1997, 144, 191-198. [CrossRef]
- Hwang, D.H.; Park, D.Y.; Kim, Y.J.; Lee, Y.H.; Hur, I.G. A Comparison with Insulation System for PWM-Inverter-Fed Induction Motors. In Proceedings of the International Conference on Electrical Machines & Systems, Shenyang, China, 18-20 August 2001. [CrossRef]
- Otero, M.; Barrera, P.; Bossio, G. R.; & Leidhold, R. Stator Inter-turn Faults Diagnosis in Induction Motors Using Zero-sequence Signal Injection. IET Electr. Power Appl.2020,14, 273 -2738. [CrossRef]
- Singh, M.; Shaik, AG Incipient Fault Detection in Stator Windings of an Induction Motor Using Stockwell Transform and SVM. IEEE Trans. Instrum. Meas. 2020,69, 9496–9504. [CrossRef]
- Sonje, DM; Kundu, P. & Chowdhury, A. A Novel Approach for Sensitive Inter-turn Fault Detection in Induction Motor Under Various Operating Conditions.Arab J Sci Eng.2019,44, 6887–6900. [CrossRef]
- Namdar, A. A robust principal component analysis-based approach for detection of a stator inter-turn fault in induction motors.Prot. Control Mod. Power Syst.2022,7,1-24. [CrossRef]
- Mejia-Barron,A.; Tapia-Tinoco,G.; Razo-Hernandez,J.R. A neural network-based model for MCSA of ITSC faults in induction motors andits power hardware in the loop simulation. Comput.Electr.Eng.2021, 93, 107234. [CrossRef]
- Tallam, R.M.; Habetler, T.G.; Harley, R.G. Transient Model for Induction Machines With Stator Winding Turn Faults. IEEE Trans. Ind. Appl.2002, 38, 632-637. [CrossRef]
- Zhao, Z.; Fan, F.; Wang, W.; Liu, Y. Detection of Stator Interturn Short-Circuit Faults in Inverter-Fed Induction Motors by On-line Common-Mode Impedance Monitoring. IEEE Trans. Instrum. Meas.2021, 70, 3513110. [CrossRef]
- Duan, F.; Ivanovi, R. Induction motor stator fault detection by a condition monitoring scheme based on parameter estimation algorithms. Electr Pow Compo Sys.2016,44, 1138-1148. [CrossRef]
- Bazine, I.B.A.; Tnani, S.; Poinot, T.; Champenois, G.; Jelassi, K. On-Line Detection of Stator and Rotor Faults Occurring in Induction Machine Diagnosis by Parameters Estimation. In Proceedings of the 8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics & Drives; Bologna, Italy, 05-08September2011. [CrossRef]
- Abdallah, H.; Benatman, K. Stator Winding Inter-turn Short-circuit Detection in Induction Motors by Parameter Identification. IET Electr. Power Appl.2017,11, 272–288. [CrossRef]
- Nguyen, V.; Seshadrinath, J.; Wang, D.; Nadarajan, S.; Vaiyapuri, V. Model-Based Diagnosis and RUL Estimation of Induction Machines Under Interturn Fault. IEEE Trans. on Ind. Applicat.2017, 53, 2690–2701. [CrossRef]
- Kallesoe, C.S.; Vadstrup, P.; Rasmussen, H.; Izadi-Zamanabadi, R. Observer Based Estimation of Stator Winding Faults in Delta-Connected Induction Motors, a LMI Approach. In Proceedings of the IAS Annual Meeting, FL, USA , 08-12October2006. [CrossRef]
- Angelo, C.; Bossio, G.R.; Gi Ac Cone, S.J.; Valla, M.I.; Garcia, G.O. On-line Model-Based Stator-Fault Detection and Identification in Induction Motors. IEEE Trans. Ind. Electron. 2009, 56, 4671–4680. [CrossRef]
- Guezmil, A.; Berriri, H.; Pusca, R.; Sakly, A.; Romary, R.; Mimouni, M. F. Detecting ITSC fault in induction machine using high-order sliding mode observer: Simulation and experimental verification.J. Control. Autom. Elec.2017, 28, 532-540. [CrossRef]
- Kia, M.Y.; Khedri, M.; Najafi, H. R.; Shamsi Nejad,M.A. Hybrid modelling of doubly fed induction generators with inter-turn stator fault and its detection method using wavelet analysis.IET Gener. Transm. Distrib.2013, 7, 982-990. [CrossRef]
- Kumar, P.S.; Xie, L.; Halick, M.S.M.; Vaiyapuri, V. Stator End-Winding Thermal and Magnetic Sensor Arrays for On-line Stator Inter-Turn Fault Detection. IEEE Sensors J. 2021, 21, 5312–5321. [CrossRef]
- Chen, P.; Xie, Y. Electromagnetic Performance and Diagnosis of Induction Motors With Stator Interturn Fault. IEEE Trans. Ind. Appl. 2021, 57,1354-1364. [CrossRef]
- Lee, S.; Wang, Y.; Song, J. Fourier and Wavelet Transformations Application to Fault Detection of Induction Motor with Stator Current. J. Cent. South Univ. Technol.2010, 17, 93–101. [CrossRef]
- Liu, H.; Huang, J.; Hou, Z.; Yang, J.; Ye, M. Stator Inter-Turn Fault Detection in Closed-Loop Controlled Drive Based on Switching Sideband Harmonics in Common-Mode Voltage. IET Electr. Power Appl.2017, 11, 178-186. [CrossRef]
- Sadeghi, R.; Samet, H.; Ghanbari, T. Detection of Stator Short-Circuit Faults in Induction Motors Using the Concept of Instantaneous Frequency. IEEE Trans. Ind. Inf. 2019,15, 4506-4515. [CrossRef]
- Akhil Vinayak, B.; Anjali Anand, K.; Jagadanand, G. Wavelet-based Real-time Stator Fault Detection of Inverter-fed Induction Motor. IET Electr. Power Appl.2020, 14, 82–90. [CrossRef]
- Almounajjed, A.; Sahoo, A.K.; Kumar, M.K. Diagnosis of Stator Fault Severity in Induction Motor Based on Discrete Wavelet Analysis. Measurement. 2021, 182, 109780. [CrossRef]
- Tian, R.; Chen, F.; Dong, S. Compound Fault Diagnosis of Stator Interturn Short Circuit and Air Gap Eccentricity Based on Random Forest and XGBoost. Math. Probl. Eng.2021,42, 2149048. [CrossRef]
- Xu, Z.; Hu, C.; Yang, F.; Kuo, S.-H.; Goh, C.-K.; Nadarajan, S. Data-Driven Inter-Turn Short Circuit Fault Detection in Induction Machines. IEEE Access.2017, 5, 25055-25068. [CrossRef]
- Husari, F.; Seshadrinath, J. Incipient Interturn Fault Detection and Severity Evaluation in Electric Drive System Using Hybrid HCNN-SVM Based Model. IEEE Trans. Ind. Inf. 2022, 18, 1823–1832. [CrossRef]
- Rajamany, G.; Srinivasan, S.; Rajamany, K.; Natarajan, R.K. Induction Motor Stator Interturn Short Circuit Fault Detection in Accordance with Line Current Sequence Components Using Artificial Neural Network. J. Electr. Comput. Eng.2019,1, 4825787. [CrossRef]
- Bensaoucha, S.; Ameur, A.; Bessedik, S.A.; Moati, Y. Artificial Neural Networks Technique to Detect and Locate an Interturn Short-Circuit Fault in Induction Motor. In Renewable Energy for Smart and Sustainable Cities; Hatti, M., Ed.; Lecture Notes in Networks and Systems; Springer International Publishing: Cham, 2019; Volume. 62, pp. 103–113,ISBN 978-3-030-04788-7. [CrossRef]
- Skowron, M.; Orlowska-Kowalska, T.; Wolkiewicz, M.; Kowalski, C.T. Convolutional Neural Network-Based Stator Current Data-Driven Incipient Stator Fault Diagnosis of Inverter-Fed Induction Motor. Energies.2020, 13, 1475. [CrossRef]
- Urresty, J.-C.; Riba, J.-R.; Romeral, L. Application of the ZSVC Component to Detect Stator Winding Inter-Turn Faults in PMSMs. Electr. Power Syst. Res.2012, 89, 38–44. [CrossRef]
- Hang, J.; Zhang, J.; Cheng, M.; Huang, J. On-line Interturn Fault Diagnosis of Permanent Magnet Synchronous Machine Using Zero-Sequence Components. IEEE Trans. Power Electron. 2015, 30, 6731–6741. [CrossRef]
- Cash, M.A.; Habetler, T.G.; Kliman, G.B. Insulation Failure Prediction in AC Machines Using Line-Neutral Voltages. IEEE Trans. on Ind. Applicat.1998, 34, 1234–1239. [CrossRef]
- Cash, M. A.; Habetler, T. G. Insulation failure prediction in inverter-fed induction machines using line-neutral voltages. In Proceedings of IAS Annual Meeting. New Orleans, LA, USA, 05-09October1997. [CrossRef]
- Garcia, P.; Briz, F.; Degner, M.W.; Diez, A.B. Diagnostics of Induction Machines Using the Zero Sequence Voltage. In Proceedings of the IAS Annual Meeting.Seattle, WA, USA, 03-07October2004. [CrossRef]
- Wang,Z.H.; Huang, X.D. Principle of Phase Measurement and Its Application Basedon All-Phase Spectral Analysis.J.Data Acq.Process.2009,24,777–782. [CrossRef]
- Huang, X.D.; Wang, Z.H. Anti-noise Performance of All-phase FFT Phase Measuring Method.J.Data Acq.Process. 2011, 26, 286–291. [CrossRef]
- Huang, K.H.; Wang, D.M.; Zhu, Z.Y.; Wei, H.F.; Jiang, W.U. Power System Harmonic Detection Algorithm Based on Cosin-Window and Interpolated FFT and APFFT. Comput.Technol. Dev.2011,21,223-230.
- Huang, X.; Wang, Y.; Jin, X.; W Lü.No-Windowed ApFFT/FFT Phase Difference Frequency Estimator Based on Frequency-Shift & Compensation. J. Electron. Inf. 2016,38,124-131. [CrossRef]
- Qi, G.Q.; Jia, X.L. High-Accuray Frequency and Phase Estimation of single-Tone Based on Phase of DFT. Acta Electron. Sin.2001, 09, 1164-1167. [CrossRef]
- Li, X.F.; Li, L.; Kou, K.; Wu, T.F.; Yang, Y. Analysis and Improvement of Time-Shift Phase Difference SpectralCorrection Based on All-Phase FFT. J. Tianjin Univ (Sci.Technol).2016, 49, 1290–1295.
- Li, S. Multi-Sensor Fusion by CWT-PARAFAC-IPSO-SVM for Intelligent Mechanical Fault Diagnosis. Sensors. 2022, 22.367. [CrossRef]
- Todkar, S.S.; Baltazart, V.; Ihamouten, A.; Derobert, X.; Guilbert, D. One-Class SVM Based Outlier Detection Strategy to Detect Thin Interlayer Debondings within Pavement Structures Using Ground Penetrating Radar Data. J. Appl. Geophys. 2021, 192. 104392. [CrossRef]
- Guan, S.; Wang, X.; Hua, L.; Li, L. Quantitative Ultrasonic Testing for Near-Surface Defects of Large Ring Forgings Using Feature Extraction and GA-SVM. Appl Acoust.2021, 173, 107714. [CrossRef]
- Zhao, Y.; Wei, G. Using an Improved PSO-SVM Model to Recognize and Classify the Image Signals. Complexit.2021, 21, 8328532. [CrossRef]













| Parameter | value | Parameter | value |
|---|---|---|---|
| Power | 5.5kW | Frequency | 50Hz |
| Voltage | 380V | Speed | 1445rpm |
| Current | 11.7A | Turns per phase | 164 |
| Poles | 4 | Connection mode | Y |
| turns | 5 | 7 | 12 | 20 | 25 | |
| resistance | ||||||
| 1 | 0.03049 | 0.04268 | 0.07317 | 0.12195 | 0.15244 | |
| 2 | 0.02156 | 0.03018 | 0.05174 | 0.08623 | 0.10779 | |
| 4 | 0.01524 | 0.02134 | 0.03659 | 0.06098 | 0.07622 | |
| 8 | 0.01078 | 0.01509 | 0.02587 | 0.04312 | 0.05390 | |
| Speed(rpm) | Torque(Tm) | Turns | Resistance (Ω) |
|---|---|---|---|
| 450,600,750,900 | 2,10,18,26 | 5,7,12,20,25 | 1,2,4,8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
