Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Low Overpotential Amperometric Sensor using Yb2O3.CuO@rGO Nanocomposite for Sensitive Detection of Ascorbic Acid in Real Samples

Version 1 : Received: 25 April 2023 / Approved: 26 April 2023 / Online: 26 April 2023 (03:32:19 CEST)

A peer-reviewed article of this Preprint also exists.

Ahmed, J.; Faisal, M.; Algethami, J.S.; Alsaiari, M.A.; Alsareii, S.A.; Harraz, F.A. Low Overpotential Amperometric Sensor Using Yb2O3.CuO@rGO Nanocomposite for Sensitive Detection of Ascorbic Acid in Real Samples. Biosensors 2023, 13, 588. Ahmed, J.; Faisal, M.; Algethami, J.S.; Alsaiari, M.A.; Alsareii, S.A.; Harraz, F.A. Low Overpotential Amperometric Sensor Using Yb2O3.CuO@rGO Nanocomposite for Sensitive Detection of Ascorbic Acid in Real Samples. Biosensors 2023, 13, 588.

Abstract

The ultimate objective of this research work is to design a sensitive and selective electrochemical sensor for efficient detection of ascorbic acid (AA), a vital antioxidant found in blood serum that may serve as a biomarker for oxidative stress. To achieve this, we utilized a novel Yb2O3.CuO@rGO nanocomposite (NC) as the active material to modify the glassy carbon working electrode (GCE). The structural properties and morphological characteristics of the Yb2O3.CuO@rGO NC were investigated using various techniques to ensure their suitability for the sensor. The resulting sensor electrode was able to detect a broad range of AA concentrations (0.5 - 1571 µM) in neutral phosphate buffer solution with a high sensitivity of 0.4341 µAµM-1cm-2 and a reasonable detection limit of 0.062 µM. The sensor's great sensitivity and selectivity allowed it to accurately determine the levels of AA in human blood serum and commercial vitamin C tablets. It demonstrated high levels of reproducibility, repeatability, and stability, making it a reliable and robust sensor for the measurement of AA at low overpotential. Overall, the Yb2O3.CuO@rGO/GCE sensor showed great potential in detecting AA from real samples.

Keywords

Ascorbic acid; Amperometric sensor; Yb2O3.CuO@rGO; Vitamin C; Human blood serum

Subject

Chemistry and Materials Science, Analytical Chemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.