Submitted:
14 April 2023
Posted:
17 April 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction:
2.1. Designing and Analysis of Proposed Wide Band Metasurface Absorber:
2.2. Analysis of Metasurface:
2.3. Analysis of Metasurface based on Sensitivity (S), Q-factor and Figure of Merit (FOM):
2.4. Analysis of Graphene Conductivity:
2.5. Analysis of Absorption Reflectance:
3.1. Proposed MS as a Bio-Sensor (Hemoglobin and Urine):
3.2. Proposed MS in MRI scan and MRI Coil:
| Frequency (THz) |
Parallel LC (Patch-dielectric) |
Series LC (Dielectric-ground) |
Series LC Patch-Dielectric (Si and Graphene) |
|---|---|---|---|
| 1.6-2.4 | L2 = 10.4pH, C2 = 0.6089pF | L1 = 43.27pH, C1 = 0.1484pF | L1 = 43.27pH, C1 = 0.1484pF |
4. Graphene Inspired Tunable THz Absorber Parametric Results:
| Ref. | Modified Technique Resonator | Frequency (THz) | Thickness (µm) |
Stability in Degree | Material | Sensitivity (GHz/RIU) |
|---|---|---|---|---|---|---|
| [8] | Modified dumbbell pair | 0.4-0.6 | 75 | 40 | Silicon | - |
| [9] | Circular Ring | 0.55-0.65 | 1.5 | - | Graphene | 190 |
| [10] | Hexagonal circular Disk | 35-40 | 1.6 | - | Graphene | - |
| [12] | Flower shaped | 3.69-9.77 | 7 | - | Graphene | - |
| [20] | Two split ring Metal resonator | 3.1-5.45 | 1.6 | - | Graphene | 5000nm/RIU |
| [P] |
Dual Ovel-Shaped |
1.6-2.4 | 25 | 60 | Graphene |
833.33-Hemoglobin/4377.77-Urine |
5. Conclusion:
Acknowledgments
References
- Xiao, S.; Wang, T.; Liu, T.; Zhou, C.; Jiang, J.; Zhang, J. Active metamaterials and metadevices: a review. J. Phys. D Appl. Phys. 2020, 53, 503002. [CrossRef]
- Liang, J.; Zhang, K.; Lei, D.; Yu, L.; Wang, S. Bandwidth Tunable THz absorber based on diagonally distributed double-sized VO2 disks. Appl. Optics 2021, 60, 3062. [CrossRef]
- Alsulami QA, Wageh S, Al-Ghamdi AA, Bilal RMH, Saeed MA. A Tunable and Wearable Dual-Band Metamaterial Absorber Based on Polyethylene Terephthalate (PET) Substrate for Sensing Applications. Polymers (Basel). 2022 Oct 25; 14 (21):4503. [CrossRef]
- Luo, Hao, and Yongzhi Cheng. & Quot; Dual-band terahertz perfect metasurface absorber based on bi-layered all-dielectric resonator structure. & Quot; Optical Materials 96 (2019): 109279. [CrossRef]
- X. Liu, K. Fan, I.V. Shadrivov, W.J. Padilla, Experimental realization of a terahertz all- dielectric metasurface absorber, Opt. Express 25 (1) (2017) 191–201. [CrossRef]
- J. Gao, C. Lan, Q. Zhao, B. Li, J. Zhou, Experimental realization of Mie-resonance terahertz absorbed by self-assembly method, Opt. Express 26 (10) (2018) 13001–13011. [CrossRef]
- Liu, Z., Gao, E., Zhang, Z. et al. Dual-Mode On-to-Off Modulation of Plasmon-Induced Transparency and Coupling Effect in Patterned Graphene-Based Terahertz Metasurface. Nanoscale Res Lett 15, 1 (2020). [CrossRef]
- Nagini, KBS Sri, and D. S. Chandu. “Wideband and Tunable Reflective Cross-Polarization Conversion Metasurface for TeraHertz Applications.” IEEE Photonics Journal 14, no. 5 (2022): 1-8. [CrossRef]
- Parmar, Juveriya, and Shobhit K. Patel. “Encrypted and tunable graphene-based metasurface refractive index sensor.” Microwave and Optical Technology Letters 64, no. 1 (2022): 77-82. [CrossRef]
- Zhang, Houjiao, Ye Liu, Zhengqi Liu, Xiaoshan Liu, Guiqiang Liu, Guolan Fu, Junqiao Wang, and Yun Shen. “Multi-functional polarization conversion manipulation via graphene-based metasurface reflectors.” Optics Express 29, no. 1 (2021): 70-81. [CrossRef]
- Hosseininejad, Seyed Ehsan, Kasra Rouhi, Mohammad Neshat, Reza Faraji-Dana, Albert Cabellos-Aparicio, Sergi Abadal, and Eduard Alarcón. “Reprogrammable graphene-based metasurface mirror with adaptive focal point for THz imaging.” Scientific reports 9, no. 1 (2019): 1-9. [CrossRef]
- Ghosh, Sambit Kumar, Vinit Singh Yadav, Santanu Das, and Somak Bhattacharyya. “Tunable graphene-based metasurface for polarization-independent broadband absorption in lower mid-infrared (MIR) range.” IEEE Transactions on Electromagnetic Compatibility 62, no. 2 (2019): 346-354. [CrossRef]
- Ghosh, S. K., Das, S., and Bhattacharyya, S., “Transmittive-type triple-band linear to circular polarization conversion in THz region using graphene-based metasurface”, Optics Communications, vol. 480, 2021. [CrossRef]
- Ghosh, Sambit Kumar Das, Santanu Bhattacharyya, Somak,’Graphene based metasurface with near unity broadband absorption in the terahertz gap ‘International Journal of RF and Microwave Computer-Aided Engineering, Vol-30 issue 12, 1096-4290. [CrossRef]
- V. S. Yadav, S. K. Ghosh, S. Das and S. Bhattacharyya, Wideband tunable mid-infrared cross-polarisation converter using monolayered graphene-based metasurface over a wide angle of incidence, IET Microw. Antennas Propag., vol. 13, no. 1, pp. 82-87, Jan. 2019. [CrossRef]
- Roya Ebrahimi Meymand, Ali Soleymani, Nosrat Granpayeh, All-optical AND, OR, and XOR logic gates based on coherent perfect absorption in graphene-based metasurface at terahertz region, Opt. Commun. 458 (2020), 124772. [CrossRef]
- S. K. Patel et al., Graphene-Based Highly Sensitive Refractive Index Biosensors Using C-Shaped Metasurface, in IEEE Sensors Journal, vol. 20, no. 12, pp. 6359-6366, 15 June15,2020,. [CrossRef]
- Jin Zhang, Zhenfei Li, Linda Shao, Weiren Zhu, Dynamical absorption manipulation in a graphene-based optically transparent and flexible metasurface, Carbon, Volume 176,2021,Pages 374-382,. [CrossRef]
- J. Parmar and S. K. Patel, “Tunable and highly sensitive graphene based biosensor with circle/split ring resonator metasurface for sensing hemoglobin/urine biomolecules,” Phys. B, Condens. Matter, vol. 624, Jan. 2022, Art. no. 413399. [CrossRef]
- Patel, Shobhit K., Nilesh Solanki, Shreyas Charola, Juveriya Parmar, Rozalina Zakaria, Osama S. Faragallah, Mahmoud MA Eid, and Ahmed Nabih Zaki Rashed. “Graphene based highly sensitive refractive index sensor using double split ring resonator metasurface.” Optical and Quantum Electronics 54, no. 3 (2022): 203. [CrossRef]
- C. Fu, L. Zhang, L. Liu, S. Dong, W. Yu and L. Han, RCS Reduction on Patterned Graphene-Based Transparent Flexible Metasurface Absorber, in IEEE Transactions on Antennas and Propagation, vol. 71, no. 2, pp. 2005-2010, Feb. 2023,. [CrossRef]
- Zhendong Wu, Bijun Xu, Mengyao Yan, Bairui Wu, Pan Cheng, and Zhichao Sun, Tunable terahertz perfect absorber with a graphene-based double split-ring structure, Opt. Mater. Express 11, 73-79 (2021). [CrossRef]
- Ning Hu, Fengling Wu, Li-an Bian, Hanqing Liu, and Peiguo Liu, Dual broadband absorber based on graphene metamaterial in the terahertz range, Opt. Mater. Express 8, 3899-3909 (2018). [CrossRef]
- S. K. Patel, J. Parmar, V. Sorathiya, R. B. Zakaria, T. K. Nguyen and V. Dhasarathan, Graphene-Based Plasmonic Absorber for Biosensing Applications Using Gold Split Ring Resonator Metasurfaces, in Journal of Lightwave Technology, vol. 39, no. 17, pp. 5617- 5624, 1 Sept.1, 2021,. [CrossRef]
- S. K. Ghosh, S. Das and S. Bhattacharyya, Graphene-Based Metasurface for Tunable Absorption and Transmission Characteristics in the Near Mid-Infrared Region, in IEEE Transactions on Antennas and Propagation, vol. 70, no. 6, pp. 4600-4612, June 2022,. [CrossRef]
- S. Barzegar-Parizi and A. Khavasi, Designing Dual-Band Absorbers by Graphene/Metallic Metasurfaces, in IEEE Journal of Quantum Electronics, vol. 55, no. 2, pp. 1-8, April 2019. [CrossRef]
- Qiangguo Zhou, Wanli Ma, Tuntan Wu, Yongzhen Li, Qinxi Qiu, Jiaxin Duan, Jingbo Li, Lin Jiang, Wei Zhou, Yanqing Gao, Jingguo Huang, and Zhiming Huang Metasurface Terahertz Perfect Absorber with Strong Multi-Frequency Selectivity, ACS Omega 2022 7 (41), 36712-36727. [CrossRef]
- Jadeja, R., Charola, S., Patel, S.K. et al. Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber. J Mater Sci 55, 3462–3469 (2020). [CrossRef]
- B. -B. Xing, Z. -G. Liu, W. -B. Lu, H. Chen, and Q. -D. Zhang, Wideband Microwave Absorber with Dynamically Tunable Absorption Based on Graphene and Random Metasurface, & quot; in IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 12, pp. 2602-2606, Dec. 2019. [CrossRef]
- Hao Luo, Yongzhi Cheng, Dual-band terahertz perfect metasurface absorber based on bi- layered all-dielectric resonator structure, Opt. Mater. 96 (2019) 109279. [CrossRef]








| S. No. | Concentration (g/l) |
Hemoglobin Refractive Index | Resonate Frequency (THz) | Sensitivity (GHz/RIU) |
FOM |
|---|---|---|---|---|---|
| 1. | 10 | 1.34 | 1.84 | 500GHz/RIU | 5000 |
| 2. | 20 | 1.36 | 1.83 | 1000GHz/RIU | 10000 |
| 3. | 30 | 1.39 | 1.80 | 2000GHz/RIU | 10000 |
| 4. | 40 | 1.43 | 1.72 | AVG = 833.33GHz/RIU | AVG = 8333 |
| S. No. | Concentration (g/l) |
Urine Refractive Index | Resonate Frequency (THz) | Sensitivity (GHz/RIU) |
FOM |
|---|---|---|---|---|---|
| 1. | 10 | 1.3326 | 1.8412 | 6000GHz/RIU | 1000 |
| 2. | 20 | 1.3327 | 1.8406 | 5000GHz/RIU | 500 |
| 3. | 30 | 1.3329 | 1.8396 | 1833.33GHz/RIU | 166.66 |
| 4. | 40 | 1.3335 | 1.8385 | AVG = 4277.77GHz/RIU | AVG = 555.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
