Submitted:
08 April 2023
Posted:
10 April 2023
You are already at the latest version
Abstract
Keywords:
Introduction
The Hypothesis
Evaluation of the Hypothesis

Conclusion
Funding
Acknowledgements
Conflicts of Interest
References
- Anonymous. Facts and Benefits of Organ Donation | UF Health, University of Florida Health. n.d. Available online: https://ufhealth.org/blog/facts-and-benefits-organ-donation (accessed on 11 November 2022).
- Montgomery, R.A.; Stern, J.M.; Lonze, B.E.; Tatapudi, V.S.; Mangiola, M.; Wu, M.; Weldon, E.; Lawson, N.; Deterville, C.; Dieter, R.A.; et al. Results of Two Cases of Pig-to-Human Kidney Xenotransplantation. New Engl. J. Med. 2022, 386, 1889–1898. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; He, W.; Ruan, Y.; Geng, Q. First pig-to-human heart transplantation. Innovation 2022, 3, 100223. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Kraner-Scheiber, S.; Petersen, B.; Rieblinger, B.; Buermann, A.; Flisikowska, T.; Flisikowski, K.; Christan, S.; Edlinger, M.; Baars, W.; et al. Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing. Sci. Rep. 2016, 6, 29081. [Google Scholar] [CrossRef] [PubMed]
- Fox, A.; Mountford, J.; Braakhuis, A.; Harrison, L.C. Innate and Adaptive Immune Responses to Nonvascular Xenografts: Evidence That Macrophages Are Direct Effectors of Xenograft Rejection. J. Immunol. 2001, 166, 2133–2140. [Google Scholar] [CrossRef] [PubMed]
- Zahr, A.; Alcaide, P.; Yang, J.; Jones, A.; Gregory, M.; Paz, N.G.D.; Patel-Hett, S.; Nevers, T.; Koirala, A.; Luscinskas, F.W.; et al. Endomucin prevents leukocyte–endothelial cell adhesion and has a critical role under resting and inflammatory conditions. Nat. Commun. 2016, 7, 10363. [Google Scholar] [CrossRef] [PubMed]
- Park-Windhol, C.; Ng, Y.S.; Yang, J.; Primo, V.; Saint-Geniez, M.; D’amore, P.A. Endomucin inhibits VEGF-induced endothelial cell migration, growth, and morphogenesis by modulating VEGFR2 signaling. Sci. Rep. 2017, 7, 17138. [Google Scholar] [CrossRef] [PubMed]
- Renteln M. Lipofuscin as the main driving force of current age-related disease: justification and strategies for removal. Current Aging Science (Submitted: February, 2022).
- Persaud, S.P.; Ritchey, J.K.; Kim, S.; Lim, S.; Ruminski, P.G.; Cooper, M.L.; Rettig, M.P.; Choi, J.; DiPersio, J.F. Antibody-drug conjugates plus Janus kinase inhibitors enable MHC-mismatched allogeneic hematopoietic stem cell transplantation. J. Clin. Investig. 2021, 131, e145501. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Rhau, B.; Hermann, A.; McNally, K.A.; Zhou, C.; Gong, D.; Weiner, O.D.; Conklin, B.R.; Onuffer, J.; Lim, W.A. Synthetic Control of Mammalian-Cell Motility by Engineering Chemotaxis to an Orthogonal Bioinert Chemical Signal. Proc. Natl. Acad. Sci. USA 2014, 111, 5896–5901. [Google Scholar] [CrossRef]
- Ma, D.; Hirose, T.; Lassiter, G.; Sasaki, H.; Rosales, I.; Coe, T.M.; Rickert, C.G.; Matheson, R.; Colvin, R.B.; Qin, W.; et al. Kidney transplantation from triple-knockout pigs expressing multiple human proteins in cynomolgus macaques. Am. J. Transplant. 2021, 22, 46–57. [Google Scholar] [CrossRef]
- Das, S.; Koyano-Nakagawa, N.; Gafni, O.; Maeng, G.; Singh, B.N.; Rasmussen, T.; Pan, X.; Choi, K.-D.; Mickelson, D.; Gong, W.; et al. Generation of human endothelium in pig embryos deficient in ETV2. Nat. Biotechnol. 2020, 38, 297–302. [Google Scholar] [CrossRef]
- Cohen, S.; Partouche, S.; Gurevich, M.; Tennak, V.; Mezhybovsky, V.; Azarov, D.; Soffer-Hirschberg, S.; Hovav, B.; Niv-Drori, H.; Weiss, C.; et al. Generation of vascular chimerism within donor organs. Sci. Rep. 2021, 11, 13437. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.W. Genetic Engineering of T Cells for Immune Tolerance. Mol. Ther. - Methods Clin. Dev. 2019, 16, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Eckl, J.; Geiger, C.; Schendel, D.J.; Pohla, H. A novel and effective method to generate human porcine-specific regulatory T cells with high expression of IL-10, TGF-β1 and IL-35. Sci. Rep. 2017, 7, 3974–3974. [Google Scholar] [CrossRef] [PubMed]
- Sachs, D.H. Transplantation tolerance through mixed chimerism: From allo to xeno. Xenotransplantation 2018, 25, e12420. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Ariyoshi, Y.; Pomposelli, T.; et al. Co-transplantation of Vascularized Thymic Graft with Kidney in Pig-to-Nonhuman Primates for the Induction of Tolerance Across Xenogeneic Barriers. Methods Mol. Biol. 2020, 2110, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Ariyoshi, Y.; Pomposelli, T.; Takeuchi, K.; Ekanayake-Alper, D.K.; Boyd, L.K.; Arn, S.J.; Sahara, H.; Shimizu, A.; Ayares, D.; et al. Intra-bone bone marrow transplantation from hCD47 transgenic pigs to baboons prolongs chimerism to >60 days and promotes increased porcine lung transplant survival. Xenotransplantation 2019, 27, e12552. [Google Scholar] [CrossRef] [PubMed]
- Pilat, N.; Granofszky, N.; Wekerle, T. Combining Adoptive Treg Transfer with Bone Marrow Transplantation for Transplantation Tolerance. Curr. Transplant. Rep. 2017, 4, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Boothby, M.R.; Hodges, E.; Thomas, J.W. Molecular regulation of peripheral B cells and their progeny in immunity. Genes Dev. 2019, 33, 26–48. [Google Scholar] [CrossRef]
- Kamano, C.; Vagefi, P.A.; Kumagai, N.; Yamamoto, S.; Barth, R.N.; LaMattina, J.C.; Moran, S.G.; Sachs, D.H.; Yamada, K. Vascularized thymic lobe transplantation in miniature swine: Thymopoiesis and tolerance induction across fully MHC-mismatched barriers. Proc. Natl. Acad. Sci. USA 2004, 101, 3827–3832. [Google Scholar] [CrossRef]
- Morsut, L.; Roybal, K.T.; Xiong, X.; Gordley, R.M.; Coyle, S.M.; Thomson, M.; Lim, W.A. Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. Cell 2016, 164, 780–791. [Google Scholar] [CrossRef]
- Bredenkamp, N.; Ulyanchenko, S.; O’neill, K.E.; Manley, N.R.; Vaidya, H.J.; Blackburn, C.C. An organized and functional thymus generated from FOXN1-reprogrammed fibroblasts. Nature 2014, 16, 902–908. [Google Scholar] [CrossRef] [PubMed]
- Muthana, M.; Kennerley, A.J.; Hughes, R.; Fagnano, E.; Richardson, J.; Paul, M.; Murdoch, C.; Wright, F.; Payne, C.; Lythgoe, M.F.; et al. Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nat. Commun. 2015, 6, 8009. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.T.; Xavier, K.B.; Campagna, S.R.; Taga, M.E.; Semmelhack, M.F.; Bassler, B.L.; Hughson, F.M. Salmonella typhimurium Recognizes a Chemically Distinct Form of the Bacterial Quorum-Sensing Signal AI-2. Mol. Cell 2004, 15, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Mirouze, N.; Dubnau, D. Chance and Necessity in Bacillus subtilis Development. Microbiol. Spectr. 2013, 1, 105–127. [Google Scholar] [CrossRef]
- Nunes-Alves, C.; Nobrega, C.; Behar, S.M.; Correia-Neves, M. Tolerance has its limits: how the thymus copes with infection. Trends Immunol. 2013, 34, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Hawthorne, W.J.; Yi, S.; O’connell, P.J. Cellular Immune Responses in Islet Xenograft Rejection. Front. Immunol. 2022, 13, 893985. [Google Scholar] [CrossRef]
- Arabi, T.Z.; Sabbah, B.N.; Lerman, A.; Zhu, X.-Y.; Lerman, L.O. Xenotransplantation: Current Challenges and Emerging Solutions. Cell Transplant. 2023, 32, 09636897221148771. [Google Scholar] [CrossRef]
- Rider, T.H.; Zook, C.E.; Boettcher, T.L.; Wick, S.T.; Pancoast, J.S.; Zusman, B.D. Broad-Spectrum Antiviral Therapeutics. PLoS ONE 2011, 6, e22572. [Google Scholar] [CrossRef]
- Yuzefovych, Y.; Valdivia, E.; Rong, S.; Hack, F.; Rother, T.; Schmitz, J.; Bräsen, J.H.; Wedekind, D.; Moers, C.; Wenzel, N.; et al. Genetic Engineering of the Kidney to Permanently Silence MHC Transcripts During ex vivo Organ Perfusion. Front. Immunol. 2020, 11, 265. [Google Scholar] [CrossRef]
- Berkhout, B. A Fourth Generation Lentiviral Vector: Simplifying Genomic Gymnastics. Mol. Ther. 2017, 25, 1741–1743. [Google Scholar] [CrossRef]
- Figueiredo, C.; Oliveira, M.C.; Chen-Wacker, C.; Jansson, K.; Hoeffler, K.; Yuzefovych, Y.; Pogozhykh, O.; Jin, Z.; Kuehnel, M.; Jonigk, D.; et al. Immunoengineering of the Vascular Endothelium to Silence MHC Expression During Normothermic Ex Vivo Lung Perfusion. Hum. Gene Ther. 2019, 30, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Su, L.T.; Gopal, K.; Wang, Z.; Yin, X.; Nelson, A.; Kozyak, B.W.; Burkman, J.M.; Mitchell, M.A.; Low, D.W.; Bridges, C.R.; et al. Uniform Scale-Independent Gene Transfer to Striated Muscle After Transvenular Extravasation of Vector. Circulation 2005, 112, 1780–1788. [Google Scholar] [CrossRef] [PubMed]
- Greelish, J.P.; Su, L.T.; Lankford, E.B.; Burkman, J.M.; Chen, H.; Konig, S.K.; Mercier, I.M.; Desjardins, P.R.; Mitchell, M.A.; Zheng, X.G.; et al. Stable restoration of the sarcoglycan complex in dystrophic muscle perfused with histamine and a recombinant adeno-associated viral vector. Nat. Med. 1999, 5, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Gregorevic, P.; Blankinship, M.J.; Allen, J.M.; Crawford, R.W.; Meuse, L.; Miller, D.G.; Russell, D.W.; Chamberlain, J.S. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat. Med. 2004, 10, 828–834. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).