Submitted:
20 October 2024
Posted:
21 October 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Discussion
Conclusion
References
- Dagenais A, Villalba-Guerrero C and Olivier M (2023) Trained immunity: A “new” weapon in the fight against infectious diseases. Front. Immunol. 14:1147476. [CrossRef]
- Ramos, I., Bernal-Rubio, D., Durham, N., Belicha-Villanueva, A., Lowen, A. C., Steel, J., & Fernandez-Sesma, A. (2011). Effects of receptor binding specificity of avian influenza virus on the human innate immune response. Journal of virology, 85(9), 4421–4431. [CrossRef]
- Luczo, J. M., Stambas, J., Durr, P. A., Michalski, W. P., & Bingham, J. (2015). Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif. Reviews in medical virology, 25(6), 406–430. [CrossRef]
- Sriwilaijaroen, N., & Suzuki, Y. (2022). Roles of Glycans and Non-glycans on the Epithelium and in the Immune System in H1-H18 Influenza A Virus Infections. Methods in molecular biology (Clifton, N.J.), 2556, 205–242. [CrossRef]
- Scheibner, D., Salaheldin, A. H., Bagato, O., Zaeck, L. M., Mostafa, A., Blohm, U., Müller, C., Eweas, A. F., Franzke, K., Karger, A., Schäfer, A., Gischke, M., Hoffmann, D., Lerolle, S., Li, X., Abd El-Hamid, H. S., Veits, J., Breithaupt, A., Boons, G. J., Matrosovich, M., … Abdelwhab, E. M. (2023). Phenotypic effects of mutations observed in the neuraminidase of human origin H5N1 influenza A viruses. PLoS pathogens, 19(2), e1011135. [CrossRef]
- Taylor M. W. (2014). Interferons. Viruses and Man: A History of Interactions, 101–119. [CrossRef]
- Chan, R. W., Yuen, K. M., Yu, W. C., Ho, C. C., Nicholls, J. M., Peiris, J. S., & Chan, M. C. (2010). Influenza H5N1 and H1N1 virus replication and innate immune responses in bronchial epithelial cells are influenced by the state of differentiation. PloS one, 5(1), e8713. [CrossRef]
- Yu, W. C., Chan, R. W., Wang, J., Travanty, E. A., Nicholls, J. M., Peiris, J. S., Mason, R. J., & Chan, M. C. (2011). Viral replication and innate host responses in primary human alveolar epithelial cells and alveolar macrophages infected with influenza H5N1 and H1N1 viruses. Journal of virology, 85(14), 6844–6855. [CrossRef]
- Huo, C., Xiao, K., Zhang, S., Tang, Y., Wang, M., Qi, P., Xiao, J., Tian, H., & Hu, Y. (2018). H5N1 Influenza a Virus Replicates Productively in Pancreatic Cells and Induces Apoptosis and Pro-Inflammatory Cytokine Response. Frontiers in cellular and infection microbiology, 8, 386. [CrossRef]
- Siegers, J. Y., van de Bildt, M. W. G., Lin, Z., Leijten, L. M., Lavrijssen, R. A. M., Bestebroer, T., Spronken, M. I. J., De Zeeuw, C. I., Gao, Z., Schrauwen, E. J. A., Kuiken, T., & van Riel, D. (2019). Viral Factors Important for Efficient Replication of Influenza A Viruses in Cells of the Central Nervous System. Journal of virology, 93(11), e02273-18. [CrossRef]
- Chan, R. W., Leung, C. Y., Nicholls, J. M., Peiris, J. S., & Chan, M. C. (2012). Proinflammatory cytokine response and viral replication in mouse bone marrow derived macrophages infected with influenza H1N1 and H5N1 viruses. PloS one, 7(11), e51057. [CrossRef]
- Short, K. R., Kedzierska, K., & van de Sandt, C. E. (2018). Back to the Future: Lessons Learned From the 1918 Influenza Pandemic. Frontiers in cellular and infection microbiology, 8, 343. [CrossRef]
- Zhao, H., Zhou, J., Jiang, S., & Zheng, B. J. (2013). Receptor binding and transmission studies of H5N1 influenza virus in mammals. Emerging microbes & infections, 2(12), e85. [CrossRef]
- Li, K., McCaw, J. M., & Cao, P. (2023). Enhanced viral infectivity and reduced interferon production are associated with high pathogenicity for influenza viruses. PLoS computational biology, 19(2), e1010886. [CrossRef]
- Peiris, J. S., Cheung, C. Y., Leung, C. Y., & Nicholls, J. M. (2009). Innate immune responses to influenza A H5N1: friend or foe?. Trends in immunology, 30(12), 574–584. [CrossRef]
- Malik, G., & Zhou, Y. (2020). Innate Immune Sensing of Influenza A Virus. Viruses, 12(7), 755. [CrossRef]
- Gourbal, B., Pinaud, S., Beckers, G. J. M., Van Der Meer, J. W. M., Conrath, U., & Netea, M. G. (2018). Innate immune memory: An evolutionary perspective. Immunological reviews, 283(1), 21–40. [CrossRef]
- Palmieri, B., Vadala’, M., & Palmieri, L. (2021). Immune memory: an evolutionary perspective. Human vaccines & immunotherapeutics, 17(6), 1604–1606. [CrossRef]
- Scarcella, M., d’Angelo, D., Ciampa, M., Tafuri, S., Avallone, L., Pavone, L. M., & De Pasquale, V. (2022). The Key Role of Lysosomal Protease Cathepsins in Viral Infections. International journal of molecular sciences, 23(16), 9089. [CrossRef]
- Us D. (2008). Kuş gribinde sitokin firtinasi [Cytokine storm in avian influenza]. Mikrobiyoloji bulteni, 42(2), 365–380.
- Nogales, A., Martinez-Sobrido, L., Topham, D. J., & DeDiego, M. L. (2018). Modulation of Innate Immune Responses by the Influenza A NS1 and PA-X Proteins. Viruses, 10(12), 708. [CrossRef]
- Li, Z., Jiang, Y., Jiao, P., Wang, A., Zhao, F., Tian, G., Wang, X., Yu, K., Bu, Z., & Chen, H. (2006). The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. Journal of virology, 80(22), 11115–11123. [CrossRef]
- Wang, J., Zeng, Y., Xu, S., Yang, J., Wang, W., Zhong, B., Ge, J., Yin, L., Bu, Z., Shu, H. B., Chen, H., Lei, C. Q., & Zhu, Q. (2018). A Naturally Occurring Deletion in the Effector Domain of H5N1 Swine Influenza Virus Nonstructural Protein 1 Regulates Viral Fitness and Host Innate Immunity. Journal of virology, 92(11), e00149-18. [CrossRef]
- Bornholdt, Z. A., & Prasad, B. V. (2008). X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus. Nature, 456(7224), 985–988. [CrossRef]
- Carrillo, B., Choi, J. M., Bornholdt, Z. A., Sankaran, B., Rice, A. P., & Prasad, B. V. (2014). The influenza A virus protein NS1 displays structural polymorphism. Journal of virology, 88(8), 4113–4122. [CrossRef]
- Kerry, P. S., Ayllon, J., Taylor, M. A., Hass, C., Lewis, A., García-Sastre, A., Randall, R. E., Hale, B. G., & Russell, R. J. (2011). A transient homotypic interaction model for the influenza A virus NS1 protein effector domain. PloS one, 6(3), e17946. [CrossRef]
- Evseev, D., & Magor, K. E. (2021). Molecular Evolution of the Influenza A Virus Non-structural Protein 1 in Interspecies Transmission and Adaptation. Frontiers in microbiology, 12, 693204. [CrossRef]
- Long, J. X., Peng, D. X., Liu, Y. L., Wu, Y. T., & Liu, X. F. (2008). Virulence of H5N1 avian influenza virus enhanced by a 15-nucleotide deletion in the viral nonstructural gene. Virus genes, 36(3), 471–478. [CrossRef]
- Kato, Y. S., Fukui, K., & Suzuki, K. (2016). Mechanism of a Mutation in Non-Structural Protein 1 Inducing High Pathogenicity of Avian Influenza Virus H5N1. Protein and peptide letters, 23(4), 372–378. [CrossRef]
- Kajihara, M., Sakoda, Y., Soda, K., Minari, K., Okamatsu, M., Takada, A., & Kida, H. (2013). The PB2, PA, HA, NP, and NS genes of a highly pathogenic avian influenza virus A/whooper swan/Mongolia/3/2005 (H5N1) are responsible for pathogenicity in ducks. Virology journal, 10, 45. [CrossRef]
- Li, W., Wang, G., Zhang, H., Xin, G., Zhang, D., Zeng, J., Chen, X., Xu, Y., Cui, Y., & Li, K. (2010). Effects of NS1 variants of H5N1 influenza virus on interferon induction, TNFalpha response and p53 activity. Cellular & molecular immunology, 7(3), 235–242. [CrossRef]
- Park, E. S., Dezhbord, M., Lee, A. R., & Kim, K. H. (2022). The Roles of Ubiquitination in Pathogenesis of Influenza Virus Infection. International journal of molecular sciences, 23(9), 4593. [CrossRef]
- Lamotte, L. A., & Tafforeau, L. (2021). How Influenza A Virus NS1 Deals with the Ubiquitin System to Evade Innate Immunity. Viruses, 13(11), 2309. [CrossRef]
- Jiang, J., Li, J., Fan, W., Zheng, W., Yu, M., Chen, C., Sun, L., Bi, Y., Ding, C., Gao, G. F., & Liu, W. (2016). Robust Lys63-Linked Ubiquitination of RIG-I Promotes Cytokine Eruption in Early Influenza B Virus Infection. Journal of virology, 90(14), 6263–6275. [CrossRef]
- Ferraris, O., Casalegno, J. S., Frobert, E., Bouscambert Duchamp, M., Valette, M., Jacquot, F., Raoul, H., Lina, B., & Ottmann, M. (2018). The NS Segment of H1N1pdm09 Enhances H5N1 Pathogenicity in a Mouse Model of Influenza Virus Infections. Viruses, 10(9), 504. [CrossRef]
- Liu, S., Zhang, L., Yao, Z., Xing, L., & Liu, K. (2017). In vitro and in vivo characterization of a novel H1N1/2009 influenza virus reassortant with an NS gene from a highly pathogenic H5N1 virus, isolated from a human. Archives of virology, 162(9), 2633–2642. [CrossRef]
- Yang, C. H., Hsu, C. F., Lai, X. Q., Chan, Y. R., Li, H. C., & Lo, S. Y. (2022). Cellular PSMB4 Protein Suppresses Influenza A Virus Replication through Targeting NS1 Protein. Viruses, 14(10), 2277. [CrossRef]
- Zhang, C., Yang, Y., Zhou, X., Yang, Z., Liu, X., Cao, Z., Song, H., He, Y., & Huang, P. (2011). The NS1 protein of influenza A virus interacts with heat shock protein Hsp90 in human alveolar basal epithelial cells: implication for virus-induced apoptosis. Virology journal, 8, 181. [CrossRef]
- Zhang, C., Yang, Y., Zhou, X., Liu, X., Song, H., He, Y., & Huang, P. (2010). Highly pathogenic avian influenza A virus H5N1 NS1 protein induces caspase-dependent apoptosis in human alveolar basal epithelial cells. Virology journal, 7, 51. [CrossRef]
- Bian, Q., Lu, J., Zhang, L., Chi, Y., Li, Y., & Guo, H. (2017). Highly pathogenic avian influenza A virus H5N1 non-structural protein 1 is associated with apoptotic activation of the intrinsic mitochondrial pathway. Experimental and therapeutic medicine, 14(5), 4041–4046. [CrossRef]
- Tsai, P. L., Chiou, N. T., Kuss, S., García-Sastre, A., Lynch, K. W., & Fontoura, B. M. (2013). Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing. PLoS pathogens, 9(6), e1003460. [CrossRef]
- Wolff, T., O’Neill, R. E., & Palese, P. (1998). NS1-Binding protein (NS1-BP): a novel human protein that interacts with the influenza A virus nonstructural NS1 protein is relocalized in the nuclei of infected cells. Journal of virology, 72(9), 7170–7180. [CrossRef]
- Tawaratsumida, K., Phan, V., Hrincius, E. R., High, A. A., Webby, R., Redecke, V., & Häcker, H. (2014). Quantitative proteomic analysis of the influenza A virus nonstructural proteins NS1 and NS2 during natural cell infection identifies PACT as an NS1 target protein and antiviral host factor. Journal of virology, 88(16), 9038–9048. [CrossRef]
- Engel D. A. (2013). The influenza virus NS1 protein as a therapeutic target. Antiviral research, 99(3), 409–416. [CrossRef]
- Lin, C. Y., Shih, M. C., Chang, H. C., Lin, K. J., Chen, L. F., Huang, S. W., Yang, M. L., Ma, S. K., Shiau, A. L., Wang, J. R., Chen, K. R., & Ling, P. (2021). Influenza a virus NS1 resembles a TRAF3-interacting motif to target the RNA sensing-TRAF3-type I IFN axis and impair antiviral innate immunity. Journal of biomedical science, 28(1), 66. [CrossRef]
- Wang, T., Wei, F., Jiang, Z., Song, J., Li, C., & Liu, J. (2022). Influenza virus NS1 interacts with 14-3-3ε to antagonize the production of RIG-I-mediated type I interferons. Virology, 574, 47–56. [CrossRef]
- Tam, E. H., Liu, Y. C., Woung, C. H., Liu, H. M., Wu, G. H., Wu, C. C., & Kuo, R. L. (2021). Role of the Chaperone Protein 14-3-3ε in the Regulation of Influenza A Virus-Activated Beta Interferon. Journal of virology, 95(20), e0023121. [CrossRef]
- Gabriel, G., Czudai-Matwich, V., & Klenk, H. D. (2013). Adaptive mutations in the H5N1 polymerase complex. Virus research, 178(1), 53–62. [CrossRef]
- Steel, J., Lowen, A. C., Pena, L., Angel, M., Solórzano, A., Albrecht, R., Perez, D. R., García-Sastre, A., & Palese, P. (2009). Live attenuated influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza. Journal of virology, 83(4), 1742–1753. [CrossRef]
- Wang, B. X., & Fish, E. N. (2017). Interactions Between NS1 of Influenza A Viruses and Interferon-α/β: Determinants for Vaccine Development. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research, 37(8), 331–341. [CrossRef]
- Brambati, A., Barry, R. M., & Sfeir, A. (2020). DNA polymerase theta (Polθ) - an error-prone polymerase necessary for genome stability. Current opinion in genetics & development, 60, 119–126. [CrossRef]
- Chen, X. S., & Pomerantz, R. T. (2021). DNA Polymerase θ: A Cancer Drug Target with Reverse Transcriptase Activity. Genes, 12(8), 1146. [CrossRef]
- Chandramouly, G., Zhao, J., McDevitt, S., Rusanov, T., Hoang, T., Borisonnik, N., Treddinick, T., Lopezcolorado, F. W., Kent, T., Siddique, L. A., Mallon, J., Huhn, J., Shoda, Z., Kashkina, E., Brambati, A., Stark, J. M., Chen, X. S., & Pomerantz, R. T. (2021). Polθ reverse transcribes RNA and promotes RNA-templated DNA repair. Science advances, 7(24), eabf1771. [CrossRef]
- Reuther, P., Giese, S., Götz, V., Kilb, N., Mänz, B., Brunotte, L., & Schwemmle, M. (2014). Adaptive mutations in the nuclear export protein of human-derived H5N1 strains facilitate a polymerase activity-enhancing conformation. Journal of virology, 88(1), 263–271. [CrossRef]
- Perrone, L. A., Plowden, J. K., García-Sastre, A., Katz, J. M., & Tumpey, T. M. (2008). H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS pathogens, 4(8), e1000115. [CrossRef]
- Karo-Karo, D., Bodewes, R., Restuadi, R., Bossers, A., Agustiningsih, A., Stegeman, J. A., Koch, G., & Muljono, D. H. (2022). Phylodynamics of Highly Pathogenic Avian Influenza A(H5N1) Virus Circulating in Indonesian Poultry. Viruses, 14(10), 2216. [CrossRef]
- Smith, G. J., Naipospos, T. S., Nguyen, T. D., de Jong, M. D., Vijaykrishna, D., Usman, T. B., Hassan, S. S., Nguyen, T. V., Dao, T. V., Bui, N. A., Leung, Y. H., Cheung, C. L., Rayner, J. M., Zhang, J. X., Zhang, L. J., Poon, L. L., Li, K. S., Nguyen, V. C., Hien, T. T., Farrar, J., … Guan, Y. (2006). Evolution and adaptation of H5N1 influenza virus in avian and human hosts in Indonesia and Vietnam. Virology, 350(2), 258–268. [CrossRef]
- Aleith, J., Brendel, M., Weipert, E., Müller, M., Schultz, D., Ko-Infekt Study Group, & Müller-Hilke, B. (2022). Influenza A Virus Exacerbates Group A Streptococcus Infection and Thwarts Anti-Bacterial Inflammatory Responses in Murine Macrophages. Pathogens (Basel, Switzerland), 11(11), 1320. [CrossRef]
- Lahariya, C., Sharma, A. K., & Pradhan, S. K. (2006). Avian flu and possible human pandemic. Indian pediatrics, 43(4), 317–325.
- Kuchipudi, S. V., Nelli, R. K., Gontu, A., Satyakumar, R., Surendran Nair, M., & Subbiah, M. (2021). Sialic Acid Receptors: The Key to Solving the Enigma of Zoonotic Virus Spillover. Viruses, 13(2), 262. [CrossRef]
- Lange, C. M., Gouttenoire, J., Duong, F. H., Morikawa, K., Heim, M. H., & Moradpour, D. (2014). Vitamin D receptor and Jak-STAT signaling crosstalk results in calcitriol-mediated increase of hepatocellular response to IFN-α. Journal of immunology (Baltimore, Md. : 1950), 192(12), 6037–6044. [CrossRef]
- Gal-Tanamy, M., Bachmetov, L., Ravid, A., Koren, R., Erman, A., Tur-Kaspa, R., & Zemel, R. (2011). Vitamin D: an innate antiviral agent suppressing hepatitis C virus in human hepatocytes. Hepatology (Baltimore, Md.), 54(5), 1570–1579. [CrossRef]
- Kondo, Y., Kato, T., Kimura, O., Iwata, T., Ninomiya, M., Kakazu, E., Miura, M., Akahane, T., Miyazaki, Y., Kobayashi, T., Ishii, M., Kisara, N., Sasaki, K., Nakayama, H., Igarashi, T., Obara, N., Ueno, Y., Morosawa, T., & Shimosegawa, T. (2013). 1(OH) vitamin D3 supplementation improves the sensitivity of the immune-response during Peg-IFN/RBV therapy in chronic hepatitis C patients-case controlled trial. PloS one, 8(5), e63672. [CrossRef]
- Iqtadar, S., Khan, A., Mumtaz, S. U., Livingstone, S., Chaudhry, M. N. A., Raza, N., Zahra, M., & Abaidullah, S. (2023). Vitamin D Deficiency (VDD) and Susceptibility towards Severe Dengue Fever-A Prospective Cross-Sectional Study of Hospitalized Dengue Fever Patients from Lahore, Pakistan. Tropical medicine and infectious disease, 8(1), 43. [CrossRef]
- Huang, F., Zhang, C., Liu, Q., Zhao, Y., Zhang, Y., Qin, Y., Li, X., Li, C., Zhou, C., Jin, N., & Jiang, C. (2020). Identification of amitriptyline HCl, flavin adenine dinucleotide, azacitidine and calcitriol as repurposing drugs for influenza A H5N1 virus-induced lung injury. PLoS pathogens, 16(3), e1008341. [CrossRef]
- Martineau, A. R., Jolliffe, D. A., Greenberg, L., Aloia, J. F., Bergman, P., Dubnov-Raz, G., Esposito, S., Ganmaa, D., Ginde, A. A., Goodall, E. C., Grant, C. C., Janssens, W., Jensen, M. E., Kerley, C. P., Laaksi, I., Manaseki-Holland, S., Mauger, D., Murdoch, D. R., Neale, R., Rees, J. R., … Hooper, R. L. (2019). Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health technology assessment (Winchester, England), 23(2), 1–44. [CrossRef]
- Grant, W. B., Lahore, H., McDonnell, S. L., Baggerly, C. A., French, C. B., Aliano, J. L., & Bhattoa, H. P. (2020). Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients, 12(4), 988. [CrossRef]
- Enioutina, E. Y., Bareyan, D., & Daynes, R. A. (2009). TLR-induced local metabolism of vitamin D3 plays an important role in the diversification of adaptive immune responses. Journal of immunology (Baltimore, Md. : 1950), 182(7), 4296–4305. [CrossRef]
- Zhao, Y., Yu, B., Mao, X., He, J., Huang, Z., Zheng, P., Yu, J., Han, G., Liang, X., & Chen, D. (2014). Dietary vitamin D supplementation attenuates immune responses of pigs challenged with rotavirus potentially through the retinoic acid-inducible gene I signalling pathway. The British journal of nutrition, 112(3), 381–389. [CrossRef]
- Gayan-Ramirez, G., & Janssens, W. (2021). Vitamin D Actions: The Lung Is a Major Target for Vitamin D, FGF23, and Klotho. JBMR plus, 5(12), e10569. [CrossRef]
- Teles, R. M., Graeber, T. G., Krutzik, S. R., Montoya, D., Schenk, M., Lee, D. J., Komisopoulou, E., Kelly-Scumpia, K., Chun, R., Iyer, S. S., Sarno, E. N., Rea, T. H., Hewison, M., Adams, J. S., Popper, S. J., Relman, D. A., Stenger, S., Bloom, B. R., Cheng, G., & Modlin, R. L. (2013). Type I interferon suppresses type II interferon-triggered human anti-mycobacterial responses. Science (New York, N.Y.), 339(6126), 1448–1453. [CrossRef]
- Matthaei, M., Budt, M., & Wolff, T. (2013). Highly pathogenic H5N1 influenza A virus strains provoke heterogeneous IFN-α/β responses that distinctively affect viral propagation in human cells. PloS one, 8(2), e56659. [CrossRef]
- Shin, H., Kim, S., Jo, A., Won, J., Gil, C. H., Yoon, S. Y., Cha, H., & Kim, H. J. (2022). Intranasal inoculation of IFN-λ resolves SARS-CoV-2 lung infection via the rapid reduction of viral burden and improvement of tissue damage. Frontiers in immunology, 13, 1009424. [CrossRef]
- Jeon, Y. J., Lim, J. H., An, S., Jo, A., Han, D. H., Won, T. B., Kim, D. Y., Rhee, C. S., & Kim, H. J. (2018). Type III interferons are critical host factors that determine susceptibility to Influenza A viral infection in allergic nasal mucosa. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology, 48(3), 253–265. [CrossRef]
- Kim, S., Kim, M. J., Kim, C. H., Kang, J. W., Shin, H. K., Kim, D. Y., Won, T. B., Han, D. H., Rhee, C. S., Yoon, J. H., & Kim, H. J. (2017). The Superiority of IFN-λ as a Therapeutic Candidate to Control Acute Influenza Viral Lung Infection. American journal of respiratory cell and molecular biology, 56(2), 202–212. [CrossRef]
- An, S., Jeon, Y. J., Jo, A., Lim, H. J., Han, Y. E., Cho, S. W., Kim, H. Y., & Kim, H. J. (2018). Initial Influenza Virus Replication Can Be Limited in Allergic Asthma Through Rapid Induction of Type III Interferons in Respiratory Epithelium. Frontiers in immunology, 9, 986. [CrossRef]
- Isomura, S., Ichikawa, T., Miyazu, M., Naruse, H., Shibata, M., Imanishi, J., Matsuo, A., Kishida, T., & Karaki, T. (1982). The preventive effect of human interferon-alpha on influenza infection; modification of clinical manifestations of influenza in children in a closed community. Biken journal, 25(3), 131–137.
- Saito, H., Takenaka, H., Yoshida, S., Tsubokawa, T., Ogata, A., Imanishi, F., & Imanishi, J. (1985). Prevention from naturally acquired viral respiratory infection by interferon nasal spray. Rhinology, 23(4), 291–295.
- Hayden, F. G., Winther, B., Donowitz, G. R., Mills, S. E., & Innes, D. J. (1987). Human nasal mucosal responses to topically applied recombinant leukocyte A interferon. The Journal of infectious diseases, 156(1), 64–72. [CrossRef]
- Beilharz, M. W., Cummins, M. J., Bennett, A. L., & Cummins, J. M. (2010). Oromucosal Administration of Interferon to Humans. Pharmaceuticals (Basel, Switzerland), 3(2), 323–344. [CrossRef]
- Tovey, M. G., & Maury, C. (1999). Oromucosal interferon therapy: marked antiviral and antitumor activity. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research, 19(2), 145–155. [CrossRef]
- Dec, M., & Puchalski, A. (2008). Use of oromucosally administered interferon-alpha in the prevention and treatment of animal diseases. Polish journal of veterinary sciences, 11(2), 175–186.
- Carp, T. N., Metoudi, M., & Ojha, V. (2024). Infection-Simulator, Immunostimulatory and Immunomodulatory Effects of Interferons I and III in Biological Systems: A New Era in Vaccinology and Therapeutics Possible?. Preprints. [CrossRef]
- Carp, T. N. (2024). Potential Innovations in Modern-Day Human and Animal Vaccine Development. Preprints. [CrossRef]
- Fraiman, J., Erviti, J., Jones, M., Greenland, S., Whelan, P., Kaplan, R. M., & Doshi, P. (2022). Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults. Vaccine, 40(40), 5798–5805. [CrossRef]
- Whitaker M. (2006). Calcium at fertilization and in early development. Physiological reviews, 86(1), 25–88. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
