Submitted:
04 March 2023
Posted:
06 March 2023
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Some Terminology

3. Effect on Total Energy
4. Static Mass and Spherically Symmetric Solution
5. Quantum Focusing Conjecture
5.1. Generalised Entropy for Cauchy-splitting surfaces

5.2. Quantum Focusing Conjecture
6. Relative Entropy and Bekenstein Bound
7. A constraint on the Expansion of Null Surfaces
8. Conclusion
Conflicts of Interest
References
- Hawking, S.W. Gravitational radiation from colliding black holes. Physical Review Letters 1971, 26, 1344. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black holes and the second law. Lett. Nuovo Cim. 1972, 4, 737–740. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black Holes and Entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Generalized second law of thermodynamics in black-hole physics. Physical Review D 1974, 9, 3292. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle creation by black holes. Communications in Mathematical Physics 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Jacobson. Thermodynamics of spacetime: The Einstein equation of state. Physical review letters 1995, 75(7), 1260–1263. [CrossRef] [PubMed]
- Jacobson, T.; Parentani, R. Horizon entropy. Foundations of Physics 2003, 33, 323–348. [Google Scholar] [CrossRef]
- Jacobson, T. On the nature of black hole entropy. AIP Conference Proceedings. American Institute of Physics, 1999, Vol. 493, pp. 85–97. [CrossRef]
- Eling, C.; Guedens, R.; Jacobson, T. Nonequilibrium thermodynamics of spacetime. Physical Review Letters 2006, 96, 121301. [Google Scholar] [CrossRef]
- Eling, C. Hydrodynamics of spacetime and vacuum viscosity. Journal of High Energy Physics 2008, 2008, 048. [Google Scholar] [CrossRef]
- Chirco, G.; Liberati, S. Nonequilibrium thermodynamics of spacetime: The role of gravitational dissipation. Physical Review D 2010, 81, 024016. [Google Scholar] [CrossRef]
- Padmanabhan, T. Is gravity an intrinsically quantum phenomenon? dynamics of gravity from the entropy of space–time and the principle of equivalence. Modern Physics Letters A 2002, 17, 1147–1158. [Google Scholar] [CrossRef]
- Padmanabhan, T. Gravity from spacetime thermodynamics. Astrophysics and space science 2003, 285, 407–417. [Google Scholar] [CrossRef]
- Padmanabhan, T. Entropy of static spacetimes and microscopic density of states. Classical and Quantum Gravity 2004, 21, 4485. [Google Scholar] [CrossRef]
- Padmanabhan, T. Gravity and the thermodynamics of horizons. Physics Reports 2005, 406, 49–125. [Google Scholar] [CrossRef]
- Padmanabhan, T. Holographic gravity and the surface term in the Einstein-Hilbert action. Brazilian Journal of Physics 2005, 35, 362–372. [Google Scholar] [CrossRef]
- Padmanabhan, T. A new perspective on gravity and dynamics of space–time. International Journal of Modern Physics D 2005, 14, 2263–2269. [Google Scholar] [CrossRef]
- Padmanabhan, T. Gravity: A new holographic perspective. International Journal of Modern Physics D 2006, 15, 1659–1675. [Google Scholar] [CrossRef]
- Padmanabhan, T. Gravity as an emergent phenomenon. International Journal of Modern Physics D 2008, 17, 591–596. [Google Scholar] [CrossRef]
- Padmanabhan, T. Entropy density of spacetime and thermodynamic interpretation of field equations of gravity in any diffeomorphism invariant theory. arXiv 2009, arXiv:0903.1254. [Google Scholar] [CrossRef]
- Padmanabhan, T. Thermodynamical aspects of gravity: new insights. Reports on Progress in Physics 2010, 73, 046901. [Google Scholar] [CrossRef]
- Padmanabhan, T. Lessons from classical gravity about the quantum structure of spacetime. Journal of Physics: Conference Series. IOP Publishing, 2011, Vol. 306, p. 012001. [CrossRef]
- Padmanabhan, T. Gravity and is thermodynamics. Current Science 2015, 2236–2242. [Google Scholar] [CrossRef]
- Paranjape, A.; Sarkar, S.; Padmanabhan, T. Thermodynamic route to field equations in Lanczos-Lovelock gravity. Physical Review D 2006, 74, 104015. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Padmanabhan, T. Holography of gravitational action functionals. Physical Review D 2006, 74, 124023. [Google Scholar] [CrossRef]
- Kothawala, D.; Sarkar, S.; Padmanabhan, T. Einstein’s equations as a thermodynamic identity: The cases of stationary axisymmetric horizons and evolving spherically symmetric horizons. Physics Letters B 2007, 652, 338–342. [Google Scholar] [CrossRef]
- Kothawala, D.; Padmanabhan, T. Thermodynamic structure of Lanczos-Lovelock field equations from near-horizon symmetries. Physical Review D 2009, 79, 104020. [Google Scholar] [CrossRef]
- Kolekar, S.; Padmanabhan, T. Holography in action. Physical Review D 2010, 82, 024036. [Google Scholar] [CrossRef]
- Verlinde, E. On the origin of gravity and the laws of Newton. Journal of High Energy Physics 2011, 2011, 1–27. [Google Scholar] [CrossRef]
- Chaichian, M.; Oksanen, M.; Tureanu, A. On gravity as an entropic force. Physics Letters B 2011, 702, 419–421. [Google Scholar] [CrossRef]
- Gao, S. Is gravity an entropic force? Entropy 2011, 13, 936–948. [Google Scholar] [CrossRef]
- Kobakhidze, A. Gravity is not an entropic force. Physical Review D 2011, 83, 021502. [Google Scholar] [CrossRef]
- Kobakhidze, A. Once more: gravity is not an entropic force. arXiv 2011, arXiv:1108.4161. [Google Scholar] [CrossRef]
- Bousso, R.; Fisher, Z.; Leichenauer, S.; Wall, A.C. Quantum focusing conjecture. Physical Review D 2016, 93, 064044. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys. Rev. D 1981, 23, 287–298. [Google Scholar] [CrossRef]
- Hooft, G. Dimensional reduction in quantum gravity. arXiv 1993, arXiv:gr-qc/9310026. [Google Scholar] [CrossRef]
- Susskind, L. The world as a hologram. Journal of Mathematical Physics 1995, 36, 6377–6396. [Google Scholar] [CrossRef]
- Maldacena, J. The large-N limit of superconformal field theories and supergravity. International journal of theoretical physics 1999, 38, 1113–1133. [Google Scholar] [CrossRef]
- Landsberg, P. Can entropy and “order” increase together? Physics Letters A 1984, 102, 171–173. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black holes and the second law. Lettere al Nuovo Cimento (1971-1985) 2019, 4, 737–740. [Google Scholar] [CrossRef]
- Casini, H. Relative entropy and the Bekenstein bound. Classical and Quantum Gravity 2008, 25, 205021. [Google Scholar] [CrossRef]
| 1 | We set
|
| 2 | see [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
