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Abstract

The holographic principle states that the information about the vol-
ume of space is stored on its boundary. Assuming this holds, we can
explain the aspects of gravity. It strongly seems that ”information” is a
more fundamental entity than the structure of spacetime as used as basis
in almost every gravity theory. In this paper, we present this connection
between gravity and information. This naturally explains the four classical
tests of gravity namely the gravitational redshift, the perihelion preces-
sion, the bending of light and the gravitational time delay. The spacetime
need to be extended to 5D to explain gravity in this context. We also
show that the second derivative of the radius of a null boundary(with re-
spect to an affine parameter λ along the generator) that encloses matter
obeying the null energy condition(NEC) cannot decrease. This can be
applied to the event horizon of a black hole.
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1 Introduction

Our first encounter with gravity came from the realization of Newton of gravity
as an attractive force between every two objects in the universe, mathematically
described by the universal law of gravitation. Despite being experienced by us
in daily life, gravity remains the most mysterious force of all. Einstein realized
gravity not as a fundamental force but as a very abstract phenomenon arising
from the curvature of spacetime induced by matter and encoded in the famous
Einstein’s field equation. General Relativity(GR) as we call the Einstein’s the-
ory is a metric theory that beautifully explains every phenomenon observed at
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large scales to date. However, the theory is incompatible with another cor-
nerstone and highly successful theory of Quantum Mechanics. Moreover being
a metric theory, it admits certain unphysical solutions such as closed timelike
curves and spacetime singularity. It also remains difficult to explain dark matter
and dark energy within the framework of GR. The first link between thermody-
namics and gravity came from the black hole physics where there is an apparent
connection between horizon area and the entropy of the black hole. Hawking[1]
first showed that the area of the horizon(A) of a black hole is a non-decreasing
function of time.

dA

dt
≥ 0 (1)

Bekenstein[2, 3, 4] took this further and asserted the equivalence of the horizon
area with the thermodynamic parameter, entropy(S) as

S = γA (2)

where γ is a constant. The claim got a robust description when Hawking[5]
derived the temperature of the black hole, thus making the relation between
the area and entropy clear. Later, in 1995, Jacobson[6] derived the Einstein’s
equation from the proportionality of entropy and horizon area together with the
relation dQ = TdS connecting heat, entropy, and temperature. There are also
closely related follow up articles[7, 8, 9, 10, 11]. Another work relating thermo-
dynamics and gravity are due to Padmanabhan[12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23] and his collaborators[24, 25, 26, 27, 28]. These results suggest that
gravity may be explained as an emergent phenomenon and has a thermody-
namic or entropic origin. Recently, Verlinde[29] proposed Newtonian gravity as
a physical entropic force, caused by changes in the information associated with
the positions of material bodies, although, this description of Newtonian gravity
as a physical entropic force has been technically questioned too[30, 31, 32, 33].
Our goal here is different, we are making no connection with the background
spacetime metric gµν and are thus not set to derive Einstein’s gravity as Jacob-
son and Padmanabhan did because we do not think that Einstein’s approach
of describing gravity as background spacetime curvature is the only and ulti-
mate reality. We are also not justifying or falsifying the claim of Verlinde of
Newtonian gravity as a physical entropic force. Since we are not using the
Einstein’s approach of gravity as spacetime curvature, we explicitly show then,
how can we explain the gravitational redshift, the modified equation of motion
for both massive and massless particles and the accelerated expansion of the
universe. This way of describing gravity as a non-metric theory naturally does
away with the inherent unphysical problems of a metric theory such as closed
timelike curves and spacetime singularity. Keeping these things in mind, we
begin our discussion by understanding this new connection between gravity and
”information” in the system. In section 3 we explain how the thermodynamic
nature of our system changes the total energy and this leads to the extension
of the spacetime to 5D. In section 4 we find the solution for a point mass in
our theory. In section 5 we review the Quantum Focusing Conjecture(QFC)[34]
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which conjectures that the quantum expansion Θ, where Θ is given by

Θ = θ +
4Gℏ
A

S′
out (3)

(θ is the classical expansion and A is the width of null congruence along its
generator), cannot increase along any congruence, which is valid for quantum
states too

dΘ

dλ
≤ 0 (4)

where λ is an affine parameter. We briefly recall Casini’s work on relative en-
tropy and Bekenstein bound in section 6 and conclude the paper by showing
using the QFC and the relation between Bekenstein bound and relative en-
tropy how the second derivative of the radius of a null boundary(with respect
to an affine parameter λ along the generator) which respects the null energy
condition(NEC) cannot decrease

d2R

dλ2
≥ 0 (5)

This can be applied to a black hole’s event horizon and we get an additional
constraint other than the Hawking area theorem.

2 Some Terminology

Figure 1: Our system consists of a source mass M and a ”boundary” which is a data
storing surface such as a holographic screen. T is the temperature of the
bounding surface arising from the evenly distribution of the total energy
E of the mass m as N bits of information as it approaches the holographic
boundary.

Let us first define some quantities relevant to our discussion and approach.
Consider the system consisting of a source mass M and a boundary. The
”boundary” here is a data storing surface such as a holographic screen. Moti-
vated by the Bekenstein bound[35], let us define a quantity CD as the maximum
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degrees of freedom associated with the mass M at a distance R from the bound-
ary as1

CD =
2πRM

ℏ
(6)

Another quantity CI is defined as the maximum degrees of freedom avail-
able. This is assumed to follow the holographic principle[36, 37] which has
strong pieces of evidence from the AdS/CFT correspondence[38] and black hole
physics[5, 3], such that the information about the volume of space is stored on
the boundary. Thus we assume that the total degrees of freedom is given by

N =
A

l2p
(7)

where A is the surface area of the boundary and lp is the Planck length. There-
fore

CI = N =
A

l2p
(8)

The ”disorder” D in the system which gives the ratio of the maximum degrees of
freedom of the massM to the maximum available degrees of freedom is therefore
given by2

D =
CD

CI
(9)

Now that we have defined some important quantities needed to present our ap-
proach, we turn towards a specific and important property of the boundary that
is the temperature T . This can be found by invoking the use of the boundary
as a holographic screen which can store data, thus as an object comes near
this holographic screen, its total energy(p0) is stored on the boundary as evenly
bits of information N . Since the distribution is even, we can use our good old
equipartition rule of thermodynamics to find the temperature of the boundary
as

p0 =
1

2
NT (10)

3 Effect on Total Energy

Due to the thermodynamic nature of our system, the total energy changes by
the internal energy(U) and the fluctuation energy as we show now. The internal
energy is given by

U = TS (11)

where T is the temperature of the boundary and S is given by CD. To find
the degree of fluctuation in our system we expand the disorder D about its
equilibrium position xµ

0

D = D0 +
∂D

∂xµ

∣∣∣∣
0

dxµ +
1

2

∂2D

∂xµ∂xν

∣∣∣∣
0

dxµdxν + ..... (12)

1We set kB = c = 1
2see [39]
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Note that here µ varies from 0 to 3 on 4D spacetime. Since xµ
0 is the equilibrium

point for D, we have
∂D

∂xµ

∣∣∣∣
0

= 0 (13)

Thus, in second order we have:

∆D = D −D0 =
1

2

∂2D

∂xµ∂xν

∣∣∣∣
0

dxµdxν (14)

The hessian hµν which captures the degree of ”fluctuation” in our thermody-
namic system is given as

hµν = ∂µ∂νD (15)

Another important dimensionless quantity(which can be used to define the
”length” of fluctuation) is defined as

h̃µν =
A

π
hµν (16)

where A is the surface area of the boundary. dl2 is the length squared of fluc-
tuation given by

dl2 =
1

2
h̃µνdx

µdxν (17)

We thus define the fluctuation energy as(
dl

dτ

)2

=
1

2
h̃µν

˙dxµ ˙dxν (18)

This thermodynamic expansion of the total energy comes at the expense
of extending the 4D spacetime to 5D spacetime such that the non-zero metric
elements are given by

g00 = 1, g11 = g22 = g33 = g04 = g40 = −1 (19)

The fifth element of the ”five-momentum” pµ is defined as

p4 = U +
dl

dτ
(20)

4 Static Mass and Spherically Symmetric Solu-
tion

The total degrees of freedom on the boundary is

N =
A

l2p
=

4πr2

l2p
(21)

Thus

U =
Mp0

r
(22)
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for h̃µν , only 11 component survives. Thus

h̃11 =
4M

r
(23)

Hence the fluctuation energy in our thermodynamic system is(
dl

dτ

)2

=
2M

r
ṙ2 (24)

Thus (
dl

dτ

)
=

√
2M

r
ṙ (25)

So we get

dx4 =
M

r
dt+

√
2M

r
dr (26)

The spacetime interval is given as

ds2 = gµνdx
µdxν (27)

where gµν is the fixed 5D background spacetime. Hence in the spherical coor-
dinates we get the spacetime interval as

ds2 = dt2 − dr2 − r2(dθ2 + sin2θϕ2)− 2M

r
dt2 − 2

√
2M

r
dtdr (28)

Eq.(28) is the Gullstrand-Painleve metric and a coordinate transformation con-
verts it to the well-known Schwarzschild metric given as

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2(dθ2 + sin2θdϕ2) (29)

5 Quantum Focusing Conjecture

Using the Quantum Focusing Conjecture(QFC)[34], we can show that the sec-
ond derivative of the radius of a null boundary which respects the null energy
condition(NEC) is non-negative. In this section we first review the formulation
of QFC.

5.1 Generalised Entropy for Cauchy-splitting surfaces

Generalised entropy was originally defined in [40] in asymptotically flat space
as the area A of all black hole horizons, plus the entropy of matter outside the
black holes

Sgen = Sout +
A

4Gℏ
(30)
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Figure 2: A Cauchy surface C is divided into two parts by a surface E. Sout is defined
as entropy restricted to one side of splitting surface E

A rigorous definition of Sout can be given as the von Neumann entropy of the
quantum state of the exterior of the horizon

Sout = −trρoutlnρout (31)

The GSL was introduced to keep the second law of thermodynamics intact when
matter entropy is lost in a black hole. Bekenstein conjectured that GSL [40]
holds: the area increase of the black hole compensate for the lost matter entropy,
so that the generalized entropy does not decrease. The notion of generalised
entropy can be extended beyond the context of causal horizons [34]. Let E
be a spacelike codimension-2 surface that splits a Cauchy surface C into two
portions. By choosing any one of the two sides arbitrarily, we can define an
entropy restricted to one side of C as Sout.

5.2 Quantum Focusing Conjecture

It conjectures [34] that the quantum expansion Θ, where Θ is given by

Θ = θ +
4Gℏ
A

S′
out (32)

(θ is the classical expansion and A is the width of null congruence along its
generator), cannot increase along any congruence, which is valid for quantum
states too

dΘ

dλ
≤ 0 (33)

where λ is an affine parameter. The evolution of the expansion θ along congru-
ence is determined by the Raychaudhuri equation:

dθ

dλ
= −θ2

2
− σabσ

ab −Rabk
akb : (34)

where Rab is the Ricci tensor, σab is the shear and ka is the (null) tangent vector
to the congruence. This gives QFC as

0 ≥ Θ′ = θ′+
4Gℏ
A

(S′′
out−S′

outθ) = −1

2
θ2− ζ2− 8πG⟨Tkk⟩+

4Gℏ
A

(S′′
out−S′

outθ)

(35)
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ζ is shear. The special choice of congruence for θ = ζ = 0, gives the Quantum
Null Energy Condition (QNEC)

⟨Tkk⟩ ≥
ℏ

2πA
S′′
out (36)

The entropy Sout which refers to the entropy on a spacelike Cauchy surface can
also be alternatively seen as the entropy of the state restricted to the part of null
surface N [34]. The stress tensor Tab and entanglement entropy Sout is related
to relative entropy S(ρ||ρo) on a null surface by

2πA
ℏ

Tkk − S′′
out = S′′(ρ||ρo) (37)

where Tkk = Tabk
akb , ka is a null vector, i.e, it satisfies gµνk

µkν = 0. ρ is an
arbitrary state and ρo is the vacuum state.

6 Relative Entropy and Bekenstein Bound

The Bekenstein bound is given as

S ≤ λER (38)

where λ is a constant, R is the size of the system, E is the total energy. Casini[41]
showed that the above bound can be written in the form

SV ≤ KV (39)

where SV is a localized entropy and KV is a localized energy. Using K =
−logρ0V − log(tre−K) and trρV = trρ0V = 1, this can be written as

tr(ρV logρV )− tr(ρV logρ
0
V ) (40)

This is simply the statement of the positivity of the relative entropy S(ρV |ρ0V )
between the state ρV and the vacuum state ρ0V and thus the bound holds.
Suppose the size of a system is L and radius of the boundary R, in the limit
when the system is far enough from the boundary such as at the centre, R ⪆ L
then Eq.(39) reduces to Eq.(38). We will use this limit in the next section.

7 A constraint on the Expansion of Null Sur-
faces

Let a null surface N enclose a region of space which respects the null energy
condition(NEC) given by

Tkk ≥ 0 (41)
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Then Eq.(37) holds for this surface. Assuming N to be spherical, let at an
initial time its radius be R. On applying NEC, Eq. (37) becomes an inequality
and we get,

S′′(ρ||ρo) ≥ −S′′
out (42)

The relationship between relative entropy and Bekenstein bound is given by

S(ρ||ρo) = Kv − Sv (43)

where Kv is localized energy and Sv ≡ Sout − S
(0)
out is a localized entropy. Here

S
(0)
out is the vacuum entropy. Eq. (42) can be written explicitly in the form

d2S(ρ||ρo)
dλ2

≥ −d2Sout

dλ2
(44)

where λ is an affine parameter. Thus, we can write

d2Kv

dλ2
− d2Sout

dλ2
+

d2S
(0)
out

dλ2
≥ −d2Sout

dλ2
(45)

Since the vacuum entropy S
(0)
out is independent of affine parameter λ it gives

d2S
(0)
out

dλ2
= 0 (46)

Therefore, we get
d2Kv

dλ2
≥ 0 (47)

Now as mentioned in the previous section, we use the limit Kv ≡ λER, where
E is the total energy of the system(which is constant) and we finally get

d2R

dλ2
≥ 0 (48)

We therefore conclude that the second derivative of the radius of a null bound-
ary(with respect to an affine parameter λ along the generator) which respects
the NEC cannot decrease. Applying this to a black hole’s event horizon we get
an additional constraint than the previously known Hawking area theorem.

8 Conclusion

This approach of describing gravity as information leads to a very important
question that whether or not gravity is a fundamental force as popularly seen.
We think the way gravity affects time strongly suggests that gravity can not be
a force in the usual sense. Of course, we have to make an additional assumption
that the degrees of freedom follows the holographic principle and scales as the
area rather than the volume of space but this assumption is very robust in itself
looking at black hole physics and gauge/gravity duality. The other important
result we showed is that, if we assume a null surface which encloses matter that
respects the NEC then the second derivative of its radius with respect to an
affine parameter λ along the generator is non-negative. This can be applied to
a black hole’s event horizon.
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