Article
Version 1
Preserved in Portico This version is not peer-reviewed
Tightly Coupled INS/APS Passive Single Beacon Navigation
Version 1
: Received: 20 February 2023 / Approved: 21 February 2023 / Online: 21 February 2023 (01:56:42 CET)
A peer-reviewed article of this Preprint also exists.
Zou, Z.; Wang, W.; Wu, B.; Ye, L.; Ochieng, W.Y. Tightly Coupled INS/APS Passive Single Beacon Navigation. Remote Sens. 2023, 15, 1854. Zou, Z.; Wang, W.; Wu, B.; Ye, L.; Ochieng, W.Y. Tightly Coupled INS/APS Passive Single Beacon Navigation. Remote Sens. 2023, 15, 1854.
Abstract
Unlike aerial or terrestrial navigation, the Global Navigation satellite system (GNSS) is not available underwater. This is a big challenge for underwater navigation. The inertial navigation system (INS) aided by the single-beacon acoustic positioning system (APS) provides one solution, but the long-range case is limited by low SNR conditions. Inspired by passive synthetic aperture detection, we proposed a new tightly coupled navigation algorithm based on spatial synthesis and one-way-travel-time (OWTT) range measurement. We design two estimators: the DOA/Range estimator using the model-based method and the tightly coupled INS/APS navigation estimator. Based on the improved UKF, all information is combined. Simulation is carried out in MATLAB. Compared with range-only tightly coupled INS/APS navigation, synthetic long baseline (SLBL) algorithm and Doppler velocity logger (DVL) aided centralized extended Kalman filter (CEKF) based single beacon INS/OWTT navigation, the proposed method's performance is proven. The main contributions of this work are: 1. Propose a new architecture of underwater integrated navigation; 2. Apply the passive acoustic detecting method in the navigation to improve accuracy. 3. Apply the tightly coupled method to improve availability.
Keywords
INS/APS single beacon navigation; tightly coupled navigation; passive synthetic aperture; joint DOA/OWTT estimation
Subject
Engineering, Marine Engineering
Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Comments (0)
We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.
Leave a public commentSend a private comment to the author(s)
* All users must log in before leaving a comment