Submitted:
16 February 2023
Posted:
17 February 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methodology
3. Results and discussion
3.1. General comments on the ChatGPT-generated review article
3.2. Evaluation of the structure of the review article
3.3. Evaluation of the introduction section
3.4. Evaluation of Chapter 2: Fundamentals and challenges of higher alcohols synthesis by CO2 hydrogenation
3.5. Evaluation of Chapter 3: Heterogeneous catalysts for CO2 hydrogenation to higher alcohols
3.6. Evaluation of Chapter 4: Case studies
3.7. Evaluation of the conclusion section
4. Conclusions
Acknowledgments
References
- Garg, P. K. Overview of Artificial Intelligence. In Artificial Intelligence; Chapman and Hall/CRC, 2021. [Google Scholar]
- Joiner, I. A. Chapter 1 - Artificial Intelligence: AI Is Nearby. In Emerging Library Technologies; Joiner, I. A., Ed.; Chandos Information Professional Series; Chandos Publishing, 2018; pp 1–22. [CrossRef]
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.-W.; Qiu, J.; Hua, K.; Su, W.; Wu, J.; Xu, H.; Han, Y.; Fu, C.; Yin, Z.; Liu, M.; Roepman, R.; Dietmann, S.; Virta, M.; Kengara, F.; Zhang, Z.; Zhang, L.; Zhao, T.; Dai, J.; Yang, J.; Lan, L.; Luo, M.; Liu, Z.; An, T.; Zhang, B.; He, X.; Cong, S.; Liu, X.; Zhang, W.; Lewis, J. P.; Tiedje, J. M.; Wang, Q.; An, Z.; Wang, F.; Zhang, L.; Huang, T.; Lu, C.; Cai, Z.; Wang, F.; Zhang, J. Artificial Intelligence: A Powerful Paradigm for Scientific Research. The Innovation 2021, 2, 100179. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, A. M.; Azhir, E.; Ali, S.; Mohammadi, M.; Ahmed, O. H.; Yassin Ghafour, M.; Hasan Ahmed, S.; Hosseinzadeh, M. Artificial Intelligence Approaches and Mechanisms for Big Data Analytics: A Systematic Study. PeerJ Comput. Sci. 2021, 7, e488. [Google Scholar] [CrossRef] [PubMed]
- Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P. From Data Mining to Knowledge Discovery in Databases. AI Mag. 1996, 17, 37–37. [Google Scholar] [CrossRef]
- Kiarashinejad, Y.; Zandehshahvar, M.; Abdollahramezani, S.; Hemmatyar, O.; Pourabolghasem, R.; Adibi, A. Knowledge Discovery in Nanophotonics Using Geometric Deep Learning. Adv. Intell. Syst. 2020, 2, 1900132. [Google Scholar] [CrossRef]
- Epps, R. W.; Bowen, M. S.; Volk, A. A.; Abdel-Latif, K.; Han, S.; Reyes, K. G.; Amassian, A.; Abolhasani, M. Artificial Chemist: An Autonomous Quantum Dot Synthesis Bot. Adv. Mater. 2020, 32, 2001626. [Google Scholar] [CrossRef] [PubMed]
- Burger, B.; Maffettone, P. M.; Gusev, V. V.; Aitchison, C. M.; Bai, Y.; Wang, X.; Li, X.; Alston, B. M.; Li, B.; Clowes, R.; Rankin, N.; Harris, B.; Sprick, R. S.; Cooper, A. I. A Mobile Robotic Chemist. Nature 2020, 583, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Leong, Y. X.; Lee, Y. H.; Koh, C. S. L.; Phan-Quang, G. C.; Han, X.; Phang, I. Y.; Ling, X. Y. Surface-Enhanced Raman Scattering (SERS) Taster: A Machine-Learning-Driven Multireceptor Platform for Multiplex Profiling of Wine Flavors. Nano Lett. 2021, 21, 2642–2649. [Google Scholar] [CrossRef] [PubMed]
- Weng, S.; Yuan, H.; Zhang, X.; Li, P.; Zheng, L.; Zhao, J.; Huang, L. Deep Learning Networks for the Recognition and Quantitation of Surface-Enhanced Raman Spectroscopy. Analyst 2020, 145, 4827–4835. [Google Scholar] [CrossRef]
- Hermann, J.; Schätzle, Z.; Noé, F. Deep-Neural-Network Solution of the Electronic Schrödinger Equation. Nat. Chem. 2020, 12, 891–897. [Google Scholar] [CrossRef]
- Tavadze, P.; Avendaño Franco, G.; Ren, P.; Wen, X.; Li, Y.; Lewis, J. P. A Machine-Driven Hunt for Global Reaction Coordinates of Azobenzene Photoisomerization. J. Am. Chem. Soc. 2018, 140, 285–290. [Google Scholar] [CrossRef]
- Gao, H.; Struble, T. J.; Coley, C. W.; Wang, Y.; Green, W. H.; Jensen, K. F. Using Machine Learning To Predict Suitable Conditions for Organic Reactions. ACS Cent. Sci. 2018, 4, 1465–1476. [Google Scholar] [CrossRef] [PubMed]
- Grzybowski, B. A.; Szymkuć, S.; Gajewska, E. P.; Molga, K.; Dittwald, P.; Wołos, A.; Klucznik, T. Chematica: A Story of Computer Code That Started to Think like a Chemist. Chem 2018, 4, 390–398. [Google Scholar] [CrossRef]
- Goldsmith, B. R.; Esterhuizen, J.; Liu, J.; Bartel, C. J.; Sutton, C. Machine Learning for Heterogeneous Catalyst Design and Discovery. AIChE J. 2018, 64, 2311–2323. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; Xin, H. Toward Artificial Intelligence in Catalysis. Nat. Catal. 2018, 1, 641–642. [Google Scholar] [CrossRef]
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing Properties of Neural Networks. arXiv , 2014. 19 February. [CrossRef]
- Kunz, M. R.; Yonge, A.; Fang, Z.; Batchu, R.; Medford, A. J.; Constales, D.; Yablonsky, G.; Fushimi, R. Data Driven Reaction Mechanism Estimation via Transient Kinetics and Machine Learning. Chem. Eng. J. 2021, 420, 129610. [Google Scholar] [CrossRef]
- Ulissi, Z. W.; Medford, A. J.; Bligaard, T.; Nørskov, J. K. To Address Surface Reaction Network Complexity Using Scaling Relations Machine Learning and DFT Calculations. Nat. Commun. 2017, 8, 14621. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cai, C.; Zhao, W.; Peng, H.-J.; Wang, T. Machine Learning-Assisted Screening of Stepped Alloy Surfaces for C1 Catalysis. ACS Catal. 2022, 12, 4252–4260. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, B.; Liu, K.; Li, H.; Chen, G.; Qiu, X.; Li, W.; Hu, J.; Fu, J.; Jiang, Y.; Liu, M.; Ye, J. Machine Learning in Screening High Performance Electrocatalysts for CO2 Reduction. Small Methods 2021, 5, 2100987. [Google Scholar] [CrossRef]
- Al-Jamimi, H. A.; BinMakhashen, G. M.; Saleh, T. A. Multiobjectives Optimization in Petroleum Refinery Catalytic Desulfurization Using Machine Learning Approach. Fuel 2022, 322, 124088. [Google Scholar] [CrossRef]
- Kim, H. W.; Lee, S. W.; Na, G. S.; Han, S. J.; Kim, S. K.; Shin, J. H.; Chang, H.; Kim, Y. T. Reaction Condition Optimization for Non-Oxidative Conversion of Methane Using Artificial Intelligence. React. Chem. Eng. 2021, 6, 235–243. [Google Scholar] [CrossRef]
- Min, Q.; Lu, Y.; Liu, Z.; Su, C.; Wang, B. Machine Learning Based Digital Twin Framework for Production Optimization in Petrochemical Industry. Int. J. Inf. Manag. 2019, 49, 502–519. [Google Scholar] [CrossRef]
- Lund, B.; Ting, W. Chatting about ChatGPT: How May AI and GPT Impact Academia and Libraries? Rochester, NY , 2023. 22 January. [CrossRef]
- ChatGPT: Optimizing Language Models for Dialogue. OpenAI. https://openai.com/blog/chatgpt/ (accessed 2023-02-14).
- M. Alshater, M. Exploring the Role of Artificial Intelligence in Enhancing Academic Performance: A Case Study of ChatGPT. Rochester, NY , 2022. 26 December. [CrossRef]
- Zeng, F.; Xi, X.; Cao, H.; Pei, Y.; Heeres, H. J.; Palkovits, R. Synthesis of Mixed Alcohols with Enhanced C3+ Alcohol Production by CO Hydrogenation over Potassium Promoted Molybdenum Sulfide. Appl. Catal. B Environ. 2019, 246, 232–241. [Google Scholar] [CrossRef]
- Xi, X.; Zeng, F.; Cao, H.; Cannilla, C.; Bisswanger, T.; de Graaf, S.; Pei, Y.; Frusteri, F.; Stampfer, C.; Palkovits, R. Enhanced C3+ Alcohol Synthesis from Syngas Using KCoMoSx Catalysts: Effect of the Co-Mo Ratio on Catalyst Performance. Appl. Catal. B Environ. 2020, 272, 118950. [Google Scholar] [CrossRef]
- Zeng, F.; Mebrahtu, C.; Xi, X.; Liao, L.; Ren, J.; Xie, J.; Heeres, H. J.; Palkovits, R. Catalysts Design for Higher Alcohols Synthesis by CO2 Hydrogenation: Trends and Future Perspectives. Appl. Catal. B Environ. 2021, 291, 120073. [Google Scholar] [CrossRef]
- He, Y.; Liu, S.; Fu, W.; Wang, C.; Mebrahtu, C.; Sun, R.; Zeng, F. Thermodynamic Analysis of CO2 Hydrogenation to Higher Alcohols (C2–4OH): Effects of Isomers and Methane. ACS Omega 2022, 7, 16502–16514. [Google Scholar] [CrossRef]
- Fu, W.; Tang, Z.; Liu, S.; He, Y.; Sun, R.; Mebrahtu, C.; Zeng, F. Thermodynamic Analysis of CO2 Hydrogenation to Ethanol: Solvent Effects. ChemistrySelect 2023, 8, e202203385. [Google Scholar] [CrossRef]
- Xi, X.; Zeng, F.; Zhang, H.; Wu, X.; Ren, J.; Bisswanger, T.; Stampfer, C.; Hofmann, J. P.; Palkovits, R.; Heeres, H. J. CO2 Hydrogenation to Higher Alcohols over K-Promoted Bimetallic Fe–In Catalysts on a Ce–ZrO2 Support. ACS Sustain. Chem. Eng. 2021, 9, 6235–6249. [Google Scholar] [CrossRef]
- Xu, D.; Wang, Y.; Ding, M.; Hong, X.; Liu, G.; Tsang, S. C. E. Advances in Higher Alcohol Synthesis from CO2 Hydrogenation. Chem 2020, 7, 849–881. [Google Scholar] [CrossRef]
- Rao, A. G. Ahead: Paving the Way for Next Generation Aircraft and Engine; London: United Kingdom, 2015. [Google Scholar]
- Boerrigter, H.; Rauch, R. Review of Applications of Gases from Biomass Gasification. Handb. Biomass Gasif.
- Luk, H. T.; Mondelli, C.; Ferré, D. C.; Stewart, J. A.; Pérez-Ramírez, J. Status and Prospects in Higher Alcohols Synthesis from Syngas. Chem. Soc. Rev. 2017, 46, 1358–1426. [Google Scholar] [CrossRef]
- Hidzir, N. S.; Som, A.; Abdullah, Z. Ethanol Production via Direct Hydration of Ethylene: A Review. 2014. [Google Scholar]
- Dong, X.; Lei, J.; Chen, Y.; Jiang, H.; Zhang, M. Selective Hydrogenation of Acetic Acid to Ethanol on Cu-In Catalyst Supported by SBA-15. Appl. Catal. B Environ. 2019, 244, 448–458. [Google Scholar] [CrossRef]
- Morales Torres, G.; Frauenlob, R.; Franke, R.; Börner, A. Production of Alcohols via Hydroformylation. Catal. Sci. Technol. 2015, 5, 34–54. [Google Scholar] [CrossRef]
- Fan, T.; Liu, H.; Shao, S.; Gong, Y.; Li, G.; Tang, Z. Cobalt Catalysts Enable Selective Hydrogenation of CO2 toward Diverse Products: Recent Progress and Perspective. J. Phys. Chem. Lett. 2021, 12, 10486–10496. [Google Scholar] [CrossRef] [PubMed]
- Lee, W. J.; Li, C.; Prajitno, H.; Yoo, J.; Patel, J.; Yang, Y.; Lim, S. Recent Trend in Thermal Catalytic Low Temperature CO2 Methanation: A Critical Review. Catal. Today 2021, 368, 2–19. [Google Scholar] [CrossRef]
- Kusama, H.; Okabe, K.; Sayama, K.; Arakawa, H. The Effect of Rhodium Precursor on Ethanol Synthesis by Catalytic Hydrogenation of Carbon Dioxide over Silica Supported Rhodium Catalysts. In Studies in Surface Science and Catalysis; Elsevier, 1998; Vol. 114, pp 431–434. [CrossRef]
- He, Z.; Qian, Q.; Ma, J.; Meng, Q.; Zhou, H.; Song, J.; Liu, Z.; Han, B. Water-Enhanced Synthesis of Higher Alcohols from CO2 Hydrogenation over a Pt/Co3O4 Catalyst under Milder Conditions. Angew. Chem. Int. Ed. 2016, 55, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, L.; Zhang, J.; Liu, X.; Wang, H.; Zhang, W.; Yang, Q.; Ma, J.; Dong, X.; Yoo, S. J.; Kim, J.-G.; Meng, X.; Xiao, F.-S. Selective Hydrogenation of CO2 to Ethanol over Cobalt Catalysts. Angew. Chem. Int. Ed. 2018, 57, 6104–6108. [Google Scholar] [CrossRef]
- Nieskens, D. L. S.; Ferrari, D.; Liu, Y.; Kolonko, R. The Conversion of Carbon Dioxide and Hydrogen into Methanol and Higher Alcohols. Catal. Commun. 2011, 14, 111–113. [Google Scholar] [CrossRef]
- Chen, Y.; Choi, S.; Thompson, L. T. Low Temperature CO2 Hydrogenation to Alcohols and Hydrocarbons over Mo2C Supported Metal Catalysts. J. Catal. 2016, 343, 147–156. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.; Shao, Z.; Wang, H.; Sun, Y. Direct CO2 Hydrogenation to Ethanol over Supported Co2C Catalysts: Studies on Support Effects and Mechanism. J. Catal. 2020, 382, 86–96. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, L.; Li, S.; Zhou, Z.; Sun, Y. Novel Heterogeneous Catalysts for CO2 Hydrogenation to Liquid Fuels. ACS Cent. Sci. 2020, 6, 1657–1670. [Google Scholar] [CrossRef]
- Lou, Y.; jiang, F.; Zhu, W.; Wang, L.; Yao, T.; Wang, S.; Yang, B.; Yang, B.; Zhu, Y.; Liu, X. CeO2 Supported Pd Dimers Boosting CO2 Hydrogenation to Ethanol. Appl. Catal. B Environ. 2021, 291, 120122. [Google Scholar] [CrossRef]
- Caparrós, F. J.; Soler, L.; Rossell, M. D.; Angurell, I.; Piccolo, L.; Rossell, O.; Llorca, J. Remarkable Carbon Dioxide Hydrogenation to Ethanol on a Palladium/Iron Oxide Single-Atom Catalyst. ChemCatChem 2018, 10, 2365–2369. [Google Scholar] [CrossRef]
- Bai, S.; Shao, Q.; Wang, P.; Dai, Q.; Wang, X.; Huang, X. Highly Active and Selective Hydrogenation of CO2 to Ethanol by Ordered Pd–Cu Nanoparticles. J. Am. Chem. Soc. 2017, 139, 6827–6830. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, B.; Xiong, S.; Zhang, Y.; Liu, B.; Li, J. The Study of Morphology Effect of Pt/Co3O4 Catalysts for Higher Alcohol Synthesis from CO2 Hydrogenation. Appl. Catal. Gen. 2017, 543, 189–195. [Google Scholar] [CrossRef]
- Liu, B.; Ouyang, B.; Zhang, Y.; Lv, K.; Li, Q.; Ding, Y.; Li, J. Effects of Mesoporous Structure and Pt Promoter on the Activity of Co-Based Catalysts in Low-Temperature CO2 Hydrogenation for Higher Alcohol Synthesis. J. Catal. 2018, 366, 91–97. [Google Scholar] [CrossRef]
- Wang, L.; He, S.; Wang, L.; Lei, Y.; Meng, X.; Xiao, F.-S. Cobalt–Nickel Catalysts for Selective Hydrogenation of Carbon Dioxide into Ethanol. ACS Catal. 2019, 9, 11335–11340. [Google Scholar] [CrossRef]
- Wang, D.; Bi, Q.; Yin, G.; Zhao, W.; Huang, F.; Xie, X.; Jiang, M. Direct Synthesis of Ethanol via CO2 Hydrogenation Using Supported Gold Catalysts. Chem. Commun. 2016, 52, 14226–14229. [Google Scholar] [CrossRef]
- Yang, C.; Mu, R.; Wang, G.; Song, J.; Tian, H.; Zhao, Z. J.; Gong, J. Hydroxyl-Mediated Ethanol Selectivity of CO2 Hydrogenation. Chem. Sci. 2019, 10, 3161–3167. [Google Scholar] [CrossRef]
- Kusama, H.; Okabe, K.; Arakawa, H. Effect of Ce Additive on CO2 Hydrogenation over Rh/SiO2 Catalysts. J. Jpn. Pet. Inst. 2001, 44, 384–391. [Google Scholar] [CrossRef]
- Kusama, H.; Okabe, K.; Sayama, K.; Arakawa, H. Rhodium Catalysts Promoted by Cerium Oxide in the CO2 Hydrogenation to Ethanol. J. Jpn. Pet. Inst. 1999, 42, 178–179. [Google Scholar] [CrossRef]
- Izumi, Y.; Kurakata, H.; Aika, K. I. Ethanol Synthesis from Carbon Dioxide on [Rh10Se]/TiO2 Catalyst Characterized by X-Ray Absorption Fine Structure Spectroscopy. J. Catal. 1998, 175, 236–244. [Google Scholar] [CrossRef]
- Kusama, H.; Okabe, K.; Sayama, K.; Arakawa, H. CO2 Hydrogenation to Ethanol over Promoted Rh/SiO2 Catalysts. Catal. Today 1996, 28, 261–266. [Google Scholar] [CrossRef]
- Guo, W.; Gao, W. G.; Wang, H.; Tian, J. J. Higher Alcohols Synthesis from CO2 Hydrogenation over K2O-Modified CuZnFeZrO2 Catalysts. Adv. Mater. Res. 2013, 827, 20–24. [Google Scholar] [CrossRef]
- Zheng, J. N.; An, K.; Wang, J. M.; Li, J.; Liu, Y. Direct Synthesis of Ethanol via CO2 Hydrogenation over the Co/La-Ga-O Composite Oxide Catalyst. J. Fuel Chem. Technol. 2019, 47, 697–708. [Google Scholar] [CrossRef]
- Gogate, M. R.; Davis, R. J. Comparative Study of CO and CO2 Hydrogenation over Supported Rh–Fe Catalysts. Catal. Commun. 2010, 11, 901–906. [Google Scholar] [CrossRef]
- Guo, H.; Li, S.; Peng, F.; Zhang, H.; Xiong, L.; Huang, C.; Wang, C.; Chen, X. Roles Investigation of Promoters in K/Cu–Zn Catalyst and Higher Alcohols Synthesis from CO2 Hydrogenation over a Novel Two-Stage Bed Catalyst Combination System. Catal. Lett. 2015, 145, 620–630. [Google Scholar] [CrossRef]
- Shao, F.; Cheng, J.; Song, X.; Wei, Z.; Zhong, X.; Yao, Z.; Wang, H.; Sun, X.; Li, A.; Wang, J. Effects of Manganese on the Catalytic Performance of CuCo Catalysts for Direct Conversion of CO/CO2 to Higher Alcohols. Dalton Trans. 2023, 52, 461–468. [Google Scholar] [CrossRef]
- Ding, L.; Shi, T.; Gu, J.; Cui, Y.; Zhang, Z.; Yang, C.; Chen, T.; Lin, M.; Wang, P.; Xue, N.; Peng, L.; Guo, X.; Zhu, Y.; Chen, Z.; Ding, W. CO2 Hydrogenation to Ethanol over Cu@Na-Beta. Chem 2020, 6, 2673–2689. [Google Scholar] [CrossRef]
- Bando, K. K.; Arakawa, H.; Ichikuni, N.; Asakura, K. A Novel Effect of Li Additive: Dynamic Control of Rh Mobility during CO2 Hydrogenation Reaction. In Studies in Surface Science and Catalysis; Corma, A., Melo, F. V., Mendioroz, S., Fierro, J. L. G., Eds.; 12th International Congress on Catalysis; Elsevier, 2000; Vol. 130, pp 3759–3764. [CrossRef]
- Takagawa, M.; Okamoto, A.; Fujimura, H.; Izawa, Y.; Arakawa, H. Ethanol Synthesis from Carbon Dioxide and Hydrogen. In Studies in Surface Science and Catalysis; Elsevier, 1998; Vol. 114, pp 525–528. [CrossRef]
- An, B.; Li, Z.; Song, Y.; Zhang, J.; Zeng, L.; Wang, C.; Lin, W. Cooperative Copper Centres in a Metal–Organic Framework for Selective Conversion of CO2 to Ethanol. Nat. Catal. 2019, 2, 709–717. [Google Scholar] [CrossRef]
- Inui, T.; Yamamoto, T.; Inoue, M.; Hara, H.; Takeguchi, T.; Kim, J. B. Highly Effective Synthesis of Ethanol by CO2-Hydrogenation on Well Balanced Multi-Functional FT-Type Composite Catalysts. Appl. Catal. Gen. 1999, 186, 395–406. [Google Scholar] [CrossRef]
| Chapter title | Contents of the chapter |
|---|---|
| 1. Introduction |
|
| 2. CO2 hydrogenation reaction |
|
| 3. Heterogeneous catalysts for CO2 hydrogenation |
|
| 4. Case studies |
|
| 5. Conclusion |
|
| Contents provided by ChatGPT | Comments by authors |
|---|---|
| They can be produced from sustainable resources, such as biomass, and they have a higher energy density than traditional biofuels like ethanol. They can also be blended with gasoline, diesel, or jet fuel, to increase their energy content and reduce emissions. | It is incorrect to state that higher alcohols have a higher energy density than ethanol, as ethanol itself is considered a higher alcohol. The energy density of higher alcohols is higher than that of methanol but lower than that of gasoline, diesel, or jet fuel, so blending cannot increase their energy density [35]. |
| This process can be divided into two main categories: pyrolysis and gasification. Pyrolysis is the thermal decomposition of biomass in the absence of oxygen, while gasification is the partial oxidation of biomass in the presence of oxygen. | Gasification of biomass results primarily in the production of syngas, which can be further processed into higher alcohols through the application of heat, pressure, and catalysts. Direct gasification of biomass does not result in the production of higher alcohols [36]. |
| Chemical synthesis. | When discussing chemical synthesis methods for the production of higher alcohols, several critical reactions CO hydrogenation [37], ethylene hydration [38], acetic acid hydrogenation [39], and hydroformylation[40] reactions have been overlooked. |
| Contents provided by ChatGPT | Comments by authors |
|---|---|
| CO2 + H2 → R-OH | Stoichiometric number, which is helpful to determine the ratio of reactants in the feed is missing. The side product, water, which may influence the structure and performance of the catalyst, as well as the equilibrium conversion, is not presented. This equation, n CO2 + 3n H2 → CnH2n+1OH + (2n − 1) H2O, encompasses all necessary information. |
| The CO2 hydrogenation process can be divided into two stages: the activation of CO2 and the reduction of CO2 to the desired alcohol. In the first stage, the CO2 is activated by the catalyst, which weakens the C-O bond and allows for the adsorption of CO2 on the catalyst surface. In the second stage, hydrogen is added to the activated CO2, which leads to the formation of the corresponding alcohol. | Adsorbed CO2 can react with hydrogen to form the desired products, or it can be dissociated into CO and then react with hydrogenation [41]. |
| Generally, methanol is the major product formed at low temperatures and pressures, while at higher temperatures and pressures, ethanol, propanol, and butanol are formed. | At low temperatures and low pressure, the formation of methanol is also difficult, methane is the main product under such conditions [42]. The effects of temperatures and pressures on alcohol formation are complicated. The described trend is inaccurate. |
| Low conversion rate: CO2 hydrogenation reaction is an endothermic process, which needs high energy input to activate the CO2. As a result, the conversion rate of CO2 to alcohols is relatively low. | The hydrogenation of higher alcohol synthesized by CO2 hydrogenation is an exothermic reaction. The low conversion rate should be ascribed to the high kinetic barrier for higher alcohol formation. |
| Copper-based | Nickel-based | Cobalt-based | Iron-based |
|---|---|---|---|
| Cu-ZnO | Ni-ZnO | Co-MnO2 | Fe-SiO2 |
| Cu-MnO2 | Ni-MnO2 | Co-ZrO2 | Fe-carbon |
| Cu-ZrO2 | Ni-ZrO2 | Co-Al2O3 | Fe-clay |
| Cu-Al2O3 | Ni-Al2O3 | Co-zeolite | Fe-zeolite |
| Cu-zeolite | Ni-zeolite | Co-graphene | Fe-metallic NP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
