Submitted:
04 February 2023
Posted:
07 February 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Theory
3. Results
4. On the Stark Broadening in Stellar Atmospheres
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beauchamp, A.; Wesemael, F.; Bergeron, P. Spectroscopic Studies of DB White Dwarfs: Improved Stark Profiles for Optical Transitions of Neutral Helium. Astrophys. J. Suppl. Ser. 1997, 108, 559–573. [Google Scholar] [CrossRef]
- Konjević, N. Plasma broadening and shifting of non-hydrogenic spectral lines: Present status and applications. Phys. Rep. 1999, 316, 339–401. [Google Scholar] [CrossRef]
- Torres, J.; van de Sande, M.J.; van der Mullen, J.J.A.M.; Gamero, A.; Sola, A. Stark broadening for simultaneous diagnostics of the electron density and temperature in atmospheric microwave discharges. Spectrochim. Acta B 2006, 61, 58–68. [Google Scholar] [CrossRef]
- Belostotskiy, S.G.; Ouk, T.; Donnelly, V.M.; Economou, D.J.; Sadeghi, N.J. Gas temperature and electron density profiles in an argon dc microdischarge measured by optical emission spectroscopy. Appl. Phys. 2010, 107, 053305. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H.; Jung, J.-E.J.; Ki, N.S.; Donnelly, V.M. Effects of N2 and O2 plasma treatments of quartz surfaces exposed to H2 plasmas. J. Vac. Sci. Technol. A 2022, 40, 053002. [Google Scholar] [CrossRef]
- Griem, H.R. Plasma spectroscopy in inertial confinement fusion and soft X-ray laser research. Phys. Fluids 1992, 4, 2346–2361. [Google Scholar] [CrossRef]
- Iglesias, E.; Griem, H.R.; Welch, B.; Weaver, J. UV Line Profiles of B V from a 10-Ps KrF-Laser-Produced Plasma. Astrophys. Space Sci. 1997, 256, 327–331. [Google Scholar] [CrossRef]
- Wang, J.S.; Griem, H.R.; Huang, Y.W.; Böttcher, F. Measurements of line broadening of B V Hα and Lδ in a laser-produced plasma. Phys. Rev. A 1992, 45, 4010–4014. [Google Scholar] [CrossRef]
- Gornushkin, I.B.; King, L.A.; Smith, B.W.; Omenetto, N.; Winefordner, J.D. Line broadening mechanisms in the low pressure laser-induced plasma. Spectrochim. Acta 1999, 54, 1207–1217. [Google Scholar] [CrossRef]
- Nicolosi, P.; Garifo, L.; Jannitti, E.; Malvezzi, A.M.; Tondello, G. Broadening and self-absorption of the resonance lines of H-like light ions in laser-produced plasmas. Nuovo Cimento B 1978, 48, 133–151. [Google Scholar] [CrossRef]
- Sorge, S.; Wierling, A.; Röpke, G.; Theobald, W.; Suerbrey, R.; Wilhein, T. Diagnostics of a laser-induced dense plasma by hydrogen-like carbon spectra. J. Phys. B 2000, 33, 2983–3000. [Google Scholar] [CrossRef]
- Yilbas, B.S.; Patel, F.; Karatas, C. Laser controlled melting of H12 hot-work tool steel with B4C particles at the surface. Opt. Laser Technol. 2015, 74, 36–42. [Google Scholar] [CrossRef]
- Hoffman, J.; Szymański, Z.; Azharonok, V. Laser controlled melting of H12 hot-work tool steel with B4C particles at the surface. AIP Conf. Proc. 2006, 812, 469–472. [Google Scholar] [CrossRef]
- Dimitrijević, M.S.; Christova, M.D. Stark widths of Lu II spectral lines. Eur. Phys. J. D 2021, 75, 172. [Google Scholar] [CrossRef]
- Majlinger, Z.; Dimitrijević, M.S.; Srećković, V. Stark broadening of Zr IV spectral lines in the atmospheres of chemically peculiar stars. Mon. Not. R. Astron. Soc. 2020, 470, 1911–1918. [Google Scholar] [CrossRef]
- Hamdi, R.; Ben Nessib, N.; Milovanović, N.; Popović, L.Č.; Dimitrijević, M.S.; Sahal-Bréchot, S. Stark Widths of Ar II Spectral Lines in the Atmospheres of Subdwarf B Stars. Atoms 2017, 5, 26. [Google Scholar] [CrossRef]
- Smiljanic, R.; Romano, D.; Bragaglia, A.; Donati, P.; Magrini, L.; et al. The Gaia -ESO Survey: Sodium and aluminium abundances in giants and dwarfs. Implications for stellar and Galactic chemical evolution. A&A 2016, 589, A115. [Google Scholar]
- Carretta, E.; Bragaglia, A.; Lucatello, S.; Gratton, R.G.; D’Orazi, V.; Sollima, A. Aluminium abundances in five discrete stellar populations of the globular cluster NGC 2808. A&A 2018, 615, A17. [Google Scholar] [CrossRef]
- Smith, K.C. Elemental abundances in normal late-B and HgMn stars from co-added IUE spectra II. Magnesium, aluminium and silicon. A&A 1993, 276, 393–408. [Google Scholar]
- Dimitrijević, M.S.; Konjević, N. Stark widths of doubly- and triply-ionized atom lines. J. Quant. Spectrosc. Radiat. Transf. 1980, 24, 451–459. [Google Scholar] [CrossRef]
- Elabidi, H. Systematic trends of Stark broadening parameters with spectroscopic charge Z within the neon isoelectronic sequence from Mg III to Br XXVI. JQSRT 2021, 259, 107407. [Google Scholar] [CrossRef]
- Elabidi, H.; Ben Nessib, N.; Sahal-Bréchot, S. Quantum mechanical calculations of the electron-impact broadening of spectral lines for intermediate coupling. J. Phys. B 2004, 37, 63–71. [Google Scholar] [CrossRef]
- Elabidi, H.; Ben Nessib, N.; Cornille, M.; Dubau, J.; Sahal-Bréechot, S. Electron impact broadening of spectral lines in Be-like ions: quantum calculations. J. Phys. B 2008, 41, 025702. [Google Scholar] [CrossRef]
- Shore, B.W.; Menzel, D. Generalized Tables for the Calculation of Dipole Transition Probabilities. Astrophys. J. Suppl. Ser. 1965, 12, 187–214. [Google Scholar] [CrossRef]
- Griem, H.R. Semiempirical Formulas for the Electron-Impact Widths and Shifts of Isolated Ion Lines in Plasmas. Phys. Rev. 1968, 165, 258–266. [Google Scholar] [CrossRef]
- Griem, H.R. Spectral line Broadening by Plasmas; McGraw-Hill: New York, NY, USA, 1974. [Google Scholar]
- Bates, D.R.; Damgaard, A. The Calculation of the Absolute Strengths of Spectral Lines. Philos. Trans. R. Soc. Lond. Ser. A 1949, 242, 101–122. [Google Scholar] [CrossRef]
- Oertel, G.K.; Shomo, L.P. Tables for the Calculation of Radial Multipole Matrix Elements by the Coulomb Approximation. Astrophys. J. Suppl. Ser. 1968, 16, 175–218. [Google Scholar] [CrossRef]
- Van Regemorter, H.; Dy Hoang, B.; Prud’homme, M. Radial transition integrals involving low or high effective quantum numbers in the Coulomb approximation. J. Phys. B 1979, 12, 1053–1061. [Google Scholar] [CrossRef]
- Martin, W.C.; Zalubas, R. Energy Levels of Aluminium, Al I through Al XIII. J. Phys. Chem. Ref. Data 1979, 8, 817–864. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y.; Reader, J. NIST ASD Team. NIST Atomic Spectra Database (ver. 5.10); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2021; Available online: https://physics.nist.gov/asd (accessed on 20 January 2023).
- Wiese, W.L.; Konjević, N. Regularities and similarities in plasma broadened spectral line widths (Stark widths). J. Quant. Spectrosc. Radiat. Transf. 1982, 28, 185–198. [Google Scholar] [CrossRef]
- Dimitrijević, M.S.; Christova, M.D. Stark Broadening of Zn III Spectral Lines. Universe 2022, 8, 430. [Google Scholar] [CrossRef]
- Kurucz, R.L. Model atmospheres for G, F, A, B, and O stars. Astrophys. J. Suppl. Ser. 1979, 40, 1–340. [Google Scholar] [CrossRef]
- Wesemael, F. Atmospheres for hot, high-gravity stars. II. Pure helium models. Astrophys. J. Suppl. Ser. 1981, 45, 177–257. [Google Scholar] [CrossRef]
- Sahal-Bréchot, S.; Dimitrijević, M.S.; Moreau, N.; Ben Nessib, N. The STARK-B database VAMDC node: A repository for spectral line broadening and shifts due to collisions with charged particles. Phys. Scr. 2015, 90, 054008. [Google Scholar] [CrossRef]
- Sahal- Bréchot, S.; Dimitrijević, M.S.; Moreau, N. STARK-B Database. Available online: http://stark-B.obspm.fr (accessed on 27 January 2023).
- Dubernet, M.L.; Antony, B.K.; Ba, Y.A.; Babikov, Y.L.; Bartschat, K.; Boudon, V.; Braams, B.J.; Chung, H.K.; Daniel, F.; Delahaye, F.; et al. The virtual atomic and molecular data centre (VAMDC) consortium. J. Phys. B 2016, 49, 074003. [Google Scholar] [CrossRef]
- Albert, D.; Antony, B.K.; Ba, Y.A.; Babikov, Y.L.; Bollard, P.; Boudon, V.; Delahaye, F.; Del Zanna, G.; Dimitrijević, M.S.; Drouin, B.J.; et al. A Decade with VAMDC: Results and Ambitions. Atoms 2020, 8, 76. [Google Scholar] [CrossRef]
- Rolader, G.E.; Batteh, J.H. Thermodynamic and electrical properties of railgun plasma armatures. IEEE Transactions on Plasma Sci. 1989, 17, 439–445. [Google Scholar] [CrossRef]
- Dimitrijević, M.S.; Djurić, Z.; Mihajlov, A.A. Stark broadening of Al III and Cu IV lines for diagnostic of the rail gun arc plasma. J. Phys. D 1994, 27, 247–252. [Google Scholar] [CrossRef]
- Pakhal, H. R.; Lucht, R. P.; Laurendeau, N. M. Spectral measurements of incipient plasma temperature and electron number density during laser ablation of aluminum in air. Appl. Phys. B 2008, 90, 15–27. [Google Scholar] [CrossRef]



| Transition | T [K] | W [Å] | 3kT/2E |
|---|---|---|---|
| Al IV 22)4s[1/2]o–22)4p[1/2 | 10000. | 1.07 | 0.471 |
| 20000. | 0.754 | 0.942 | |
| = 4515.6 Å | 40000. | 0.533 | 1.88 |
| 80000. | 0.410 | 3.77 | |
| 160000. | 0.352 | 7.53 | |
| Al IV 22)4s[1/2]o–22)4p[1/2 | 10000. | 0.643 | 0.471 |
| 20000. | 0.455 | 0.942 | |
| = 3261.3 Å | 40000. | 0.322 | 1.88 |
| 80000. | 0.250 | 3.77 | |
| 160000. | 0.215 | 7.53 | |
| Al IV 22)4s[1/2]o–22)4p[3/2] | 10000. | 2.00 | 0.471 |
| 20000. | 1.42 | 0.943 | |
| = 4520.2 Å | 40000. | 1.00 | 1.89 |
| 80000. | 0.776 | 3.77 | |
| 160000. | 0.671 | 7.54 | |
| Al IV 22)4p[1/2–22)4d[3/2 | 10000. | 0.747 | 2.36 |
| 20000. | 0.554 | 4.73 | |
| = 3485.1 Å | 40000. | 0.429 | 9.45 |
| 80000. | 0.345 | 18.9 | |
| 160000. | 0.296 | 37.8 | |
| Al IV 22)4p[1/2–22)4d[3/2 | 10000. | 0.710 | 3.99 |
| 20000. | 0.543 | 7.98 | |
| = 3279.5 Å | 40000. | 0.422 | 16.0 |
| 80000. | 0.340 | 31.9 | |
| 160000. | 0.294 | 63.8 | |
| Al IV 22)4p[1/2–22)4d[3/2 | 10000. | 1.38 | 3.99 |
| 20000. | 1.05 | 7.98 | |
| = 4550.5 Å | 40000. | 0.817 | 16.0 |
| 80000. | 0.659 | 31.9 | |
| 160000. | 0.571 | 63.8 | |
| Al IV 22)4p[3/2]–22)4d[5/2]o | 10000. | 0.506 | 2.32 |
| 20000. | 0.381 | 4.64 | |
| = 3492.1 Å | 40000. | 0.303 | 9.28 |
| 80000. | 0.248 | 18.6 | |
| 160000. | 0.213 | 37.1 | |
| Al IV 22)4p[3/2–22)4d[3/2 | 10000. | 0.780 | 2.36 |
| 20000. | 0.578 | 4.73 | |
| = 3482.3 Å | 40000. | 0.446 | 9.45 |
| 80000. | 0.358 | 18.9 | |
| 160000. | 0.307 | 37.8 | |
| Al IV 22)4p[3/2–22)4d[3/2 | 10000. | 0.741 | 3.99 |
| 20000. | 0.565 | 7.98 | |
| = 3277.0 Å | 40000. | 0.437 | 16.0 |
| 80000. | 0.352 | 31.9 | |
| 160000. | 0.305 | 63.8 | |
| Al IV 22)4s[3/2]o–22)4p[1/2 | 10000. | 1.33 | 0.545 |
| 20000. | 0.940 | 1.09 | |
| = 5224.1 Å | 40000. | 0.668 | 2.18 |
| 80000. | 0.520 | 4.36 | |
| 160000. | 0.448 | 8.72 | |
| Al IV 22)4s[3/2]o–22)4p[1/2 | 10000. | 0.830 | 0.545 |
| 20000. | 0.587 | 1.09 | |
| = 3916.5 Å | 40000. | 0.415 | 2.18 |
| 80000. | 0.320 | 4.36 | |
| 160000. | 0.276 | 8.72 | |
| Al IV 22)4s[3/2]o–22)4p[3/2] | 10000. | 0.684 | 0.545 |
| 20000. | 0.484 | 1.09 | |
| = 4291.9 Å | 40000. | 0.342 | 2.18 |
| 80000. | 0.263 | 4.36 | |
| 160000. | 0.225 | 8.72 | |
| Al IV 22)4s[3/2]o–22)4p[5/2] | 10000. | 0.606 | 0.545 |
| 20000. | 0.429 | 1.09 | |
| = 4544.1 Å | 40000. | 0.303 | 2.18 |
| 80000. | 0.232 | 4.36 | |
| 160000. | 0.198 | 8.72 | |
| Al IV 22)4p[1/2–22)4d[1/2]o | 10000. | 0.589 | 1.89 |
| 20000. | 0.441 | 3.77 | |
| = 3279.6 Å | 40000. | 0.348 | 7.55 |
| 80000. | 0.287 | 15.1 | |
| 160000. | 0.249 | 30.2 | |
| Al IV 22)4p[1/2–22)4d[3/2]o | 10000. | 0.387 | 2.71 |
| 20000. | 0.294 | 5.43 | |
| = 3108.0 Å | 40000. | 0.236 | 10.9 |
| 80000. | 0.195 | 21.7 | |
| 160000. | 0.166 | 43.4 | |
| Al IV 22)4p[1/2–22)4d[1/2]o | 10000. | 0.977 | 1.89 |
| 20000. | 0.731 | 3.77 | |
| = 4210.3 Å | 40000. | 0.575 | 7.55 |
| 80000. | 0.474 | 15.1 | |
| 160000. | 0.412 | 30.2 | |
| Al IV 22)4p[1/2–22)4d[3/2]o | 10000. | 0.624 | 2.71 |
| 20000. | 0.473 | 5.43 | |
| = 3931.7 Å | 40000. | 0.381 | 10.9 |
| 80000. | 0.313 | 21.7 | |
| 160000. | 0.267 | 43.4 | |
| Al IV 22)4p[3/2]–22)4d[1/2]o | 10000. | 0.829 | 1.89 |
| 20000. | 0.619 | 3.77 | |
| = 3797.4 Å | 40000. | 0.485 | 7.55 |
| 80000. | 0.399 | 15.1 | |
| 160000. | 0.347 | 30.2 | |
| Al IV 22)4p[3/2]–22)4d[3/2]o | 10000. | 0.546 | 2.71 |
| 20000. | 0.412 | 5.43 | |
| = 3569.2 Å | 40000. | 0.329 | 10.9 |
| 80000. | 0.270 | 21.7 | |
| 160000. | 0.231 | 43.4 | |
| Al IV 22)4p[3/2]–22)4d[5/2]o | 10000. | 0.704 | 2.94 |
| 20000. | 0.540 | 5.88 | |
| = 3532.0 Å | 40000. | 0.437 | 11.8 |
| 80000. | 0.363 | 23.5 | |
| 160000. | 0.310 | 47.0 | |
| Al IV 22)4p[5/2]–22)4d[3/2]o | 10000. | 0.372 | 2.71 |
| 20000. | 0.278 | 5.43 | |
| = 3411.8 Å | 40000. | 0.217 | 10.9 |
| 80000. | 0.176 | 21.7 | |
| 160000. | 0.149 | 43.4 | |
| Al IV 22)4p[5/2]–22)4d[5/2]o | 10000. | 0.458 | 2.94 |
| 20000. | 0.347 | 5.88 | |
| = 3377.7 Å | 40000. | 0.276 | 11.8 |
| 80000. | 0.226 | 23.5 | |
| 160000. | 0.192 | 47.0 | |
| Al IV 22)4p[5/2]–22)4d[7/2]o | 10000. | 0.511 | 2.10 |
| 20000. | 0.381 | 4.20 | |
| = 3499.1 Å | 40000. | 0.295 | 8.39 |
| 80000. | 0.238 | 16.8 | |
| 160000. | 0.204 | 33.6 |
| Transition | [Å] | W [Å] | W [ ] |
|---|---|---|---|
| Al IV 22)4s[1/2]o–22)4p[1/2 | 4516. | 0.410 | 0.379 |
| Al IV 22)4s[1/2]o–22)4p[1/2 | 3261. | 0.250 | 0.442 |
| Al IV 22)4s[1/2]o–22)4p[3/2] | 4520. | 0.776 | 0.715 |
| Al IV 22)4p[1/2–22)4d[3/2 | 3485. | 0.345 | 0.535 |
| Al IV 22)4p[1/2–22)4d[3/2 | 3279. | 0.340 | 0.596 |
| Al IV 22)4p[1/2–22)4d[3/2 | 4551. | 0.659 | 0.599 |
| Al IV 22)4p[3/2]–22)4d[5/2]o | 3492. | 0.248 | 0.383 |
| Al IV 22)4p[3/2–22)4d[3/2 | 3482. | 0.358 | 0.556 |
| Al IV 22)4p[3/2–22)4d[3/2 | 3277. | 0.352 | 0.618 |
| Al IV 22)4s[3/2]o–22)4p[1/2 | 5224. | 0.520 | 0.359 |
| Al IV 22)4s[3/2]o–22)4p[1/2 | 3917. | 0.320 | 0.393 |
| Al IV 22)4s[3/2]o–22)4p[3/2] | 4292. | 0.263 | 0.269 |
| Al IV 22)4s[3/2]o–22)4p[5/2] | 4544. | 0.232 | 0.212 |
| Al IV 22)4p[1/2–22)4d[1/2]o | 3280. | 0.287 | 0.502 |
| Al IV 22)4p[1/2–22)4d[3/2]o | 3108. | 0.195 | 0.380 |
| Al IV 22)4p[1/2–22)4d[1/2]o | 4210. | 0.474 | 0.504 |
| Al IV 22)4p[1/2–22)4d[3/2]o | 3932. | 0.313 | 0.382 |
| Al IV 22)4p[3/2]–22)4d[1/2]o | 3797. | 0.399 | 0.521 |
| Al IV 22)4p[3/2]–22)4d[3/2]o | 3569. | 0.270 | 0.400 |
| Al IV 22)4p[3/2]–22)4d[5/2]o | 3532. | 0.363 | 0.548 |
| Al IV 22)4p[5/2]–22)4d[3/2]o | 3412. | 0.176 | 0.284 |
| Al IV 22)4p[5/2]–22)4d[5/2]o | 3378. | 0.226 | 0.373 |
| Al IV 22)4p[5/2]–22)4d[7/2]o | 3499. | 0.238 | 0.366 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).