Submitted:
28 January 2023
Posted:
07 February 2023
You are already at the latest version
Abstract
Keywords:
Introduction
Chemical composition of essential oil and extracts of M. communis leaves
Drying methodologies of M. communis aerial parts for essential oil extraction.
Antibacterial activity
Antibiofilm activity:
Antioxidant activity
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| MIC | minimum inhibitory concentration |
| MBC | minimum bactericidal concentration |
| MFC | minimum fungicidal concentration |
| EO | essential oil |
| MQSIC | minimal QS inhibitory concentration |
| MRSA | methicillin resistant Staphylococcus aureus |
| ZVINs | zero valent iron nanoparticles |
| MC-ZVINs | Myrtus communis zero valent iron nanoparticles |
| TNF | tumor necrosis factor |
| IL | interleukin |
| 80ME | 80% methanol |
| T2DM | type 2 diabetes mellitus. |
| T1DM | type 1 diabetes mellitus. |
| MCA-1 | Myrtucommuacetalone-1 |
| NFkB | nuclear factor kappa B |
| CCl4 | carbon tetrachloride |
| ND | not determined |
References
- González-Varo JP, Arroyo J, Aparicio A. Effects of fragmentation on pollinator assemblage, pollen limitation and seed production of Mediterranean myrtle (Myrtus communis). Biol Conserv. 2009 May;142(5):1058–65. [CrossRef]
- González-Varo JP, Albaladejo RG, Aparicio A, Arroyo J. Linking genetic diversity, mating patterns and progeny performance in fragmented populations of a Mediterranean shrub: Fragmentation effects on plant progeny performance. J Appl Ecol. 2010 Dec;47(6):1242–52. [CrossRef]
- Migliore J, Baumel A, Juin M, Médail F. From Mediterranean shores to central Saharan mountains: key phylogeographical insights from the genus Myrtus: Phylogeography of the genus Myrtus. J Biogeogr. 2012 May;39(5):942–56. [CrossRef]
- Mir MA, Bashir N, Alfaify A, Oteef MDY. GC-MS analysis of Myrtus communis extract and its antibacterial activity against Gram-positive bacteria. BMC Complement Med Ther. 2020 Dec;20(1):86. [CrossRef]
- Nabati F, Mojab F, Habibi-Rezaei M, Bagherzadeh K, Amanlou M, Yousefi B. Large scale screening of commonly used Iranian traditional medicinal plants against urease activity. DARU J Pharm Sci. 2012 Dec;20(1):72. [CrossRef]
- Bouzabata A, Cabral C, Gonçalves MJ, Cruz MT, Bighelli A, Cavaleiro C, et al. Myrtus communis L. as source of a bioactive and safe essential oil. Food Chem Toxicol. 2015 Jan;75:166–72. [CrossRef]
- Amsalu N, Bezie Y, Fentahun M, Alemayehu A, Amsalu G. Use and Conservation of Medicinal Plants by Indigenous People of Gozamin Wereda, East Gojjam Zone of Amhara Region, Ethiopia: An Ethnobotanical Approach. Evid Based Complement Alternat Med. 2018;2018:1–23. [CrossRef]
- Seyoum G, Zerihun G. An ethnobotanical study of medicinal plants in Debre Libanos Wereda, Central Ethiopia. Afr J Plant Sci. 2014 Jul 31;8(7):366–79. [CrossRef]
- Akaydin G, Şi̇Mşek I, Arituluk ZC, Yeşi̇Lada E. An ethnobotanical survey in selected towns of the Mediterranean subregion (Turkey). Turk J Biol [Internet]. 2013 Jan 1 [cited 2023 Jan 4]. Available online: https://journals.tubitak.gov.tr/biology/vol37/iss2/15.
- Tadesse M, Mesfin B. Ethiopian e-J ResInnov Foresight [Internet]. 2010th ed. (010;2:85-102.; vol. 2). Available online: https://journals.bdu.edu.et/index.php/eejrif4/issue/view/124.
- Jabri MA, Rtibi K, Ben-Said A, Aouadhi C, Hosni K, Sakly M, et al. Antidiarrhoeal, antimicrobial and antioxidant effects of myrtle berries (Myrtus communis L.) seeds extract. J Pharm Pharmacol. 2016 Feb;68(2):264–74. [CrossRef]
- Mahmoudvand H, Fallahi S, Mahmoudvand H, Shakibaie M, Harandi MF, Dezaki ES. Efficacy of Myrtus communis L. to Inactivate the Hydatid Cyst Protoscoleces. J Investig Surg Off J Acad Surg Res. 2016 Jun;29(3):137–43. [CrossRef]
- Alipour G, Dashti S, Hosseinzadeh H. Review of Pharmacological Effects of Myrtus communis L. and its Active Constituents: MYRTUS COMMUNIS L. AND ITS ACTIVE CONSTITUENTS. Phytother Res. 2014 Aug;28(8):1125–36. [CrossRef]
- Sen A, Yuksel M, Bulut G, Bitis L, Ercan F, Ozyilmaz-Yay N, et al. Therapeutic Potential of Myrtus communis Subsp. communis Extract Against Acetic ACID-Induced Colonic Inflammation in Rats: THERAPEUTIC POTENTIAL OF MYRTUS COMMUNIS SUBSP. COMMUNIS EXTRACT. J Food Biochem. 2017 Feb;41(1):e12297. [CrossRef]
- Birhanie MW, Walle B, Rebba K. Hypnotic effect of the essential oil from the leaves of Myrtus communis on mice. Nat Sci Sleep. 2016;8:267–75. [CrossRef]
- Gortzi O, Lalas S, Chinou I, Tsaknis J. Reevaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes. Eur Food Res Technol. 2008 Jan;226(3):583–90. [CrossRef]
- Serce S, Ercisli S, Sengul M, Gunduz K, Orhan E. Antioxidant activities and fatty acid composition of wild grown myrtle ( Myrtus communis L.) fruits. Pharmacogn Mag. 2010;6(21):9. [CrossRef]
- Bruna S, Portis E, Cervelli C, De Benedetti L, Schiva T, Mercuri A. AFLP-based genetic relationships in the Mediterranean myrtle (Myrtus communis L.). Sci Hortic. 2007 Aug;113(4):370–5. [CrossRef]
- Nicoletti R, Salvatore M, Ferranti P, Andolfi A. Structures and Bioactive Properties of Myrtucommulones and Related Acylphloroglucinols from Myrtaceae. Molecules. 2018 Dec 19;23(12):3370. [CrossRef]
- Boelens MH, Jimenez R. The Chemical Composition of Spanish Myrtle Oils. Part II. J Essent Oil Res. 1992 Jul;4(4):349–53. [CrossRef]
- Touaibia, M. Touaibia M. Composition and anti-inflammatory effect of the common myrtle (Myrtus communis L.) essential oil growing wild in Algeria. Phytothérapie [Internet]. 2017 Feb 24 [cited 2023 Jan 4]. Available online: http://link.springer.com/10.1007/s10298-017-1100-9.
- Chalchat JC, Garry RP, Michet A. Essential Oils of Myrtle ( Myrtus communis L.) of the Mediterranean Littoral. J Essent Oil Res. 1998 Nov;10(6):613–7. [CrossRef]
- Mulas M, Melis RAM. Essential Oil Composition of Myrtle ( Myrtus communis ) Leaves. J Herbs Spices Med Plants. 2011 Mar 16;17(1):21–34. [CrossRef]
- Bekhechi C, Watheq Malti CE, Boussaïd M, Achouri I, Belilet K, Gibernau M, et al. Composition and Chemical Variability of Myrtus communis Leaf Oil From Northwestern Algeria. Nat Prod Commun. 2019 May;14(5):1934578X1985003. [CrossRef]
- Mimica-Dukić N, Bugarin D, Grbović S, Mitić-Ćulafić D, Vuković-Gačić B, Orčić D, et al. Essential Oil of Myrtus communis L. as a Potential Antioxidant and Antimutagenic Agents. Molecules. 2010 Apr 15;15(4):2759–70. [CrossRef]
- Flamini G, Cioni PL, Morelli I, Maccioni S, Baldini R. Phytochemical typologies in some populations of Myrtus communis L. on Caprione Promontory (East Liguria, Italy). Food Chem. 2004 May;85(4):599–604. [CrossRef]
- Usai M, Marchetti M, Culeddu N, Mulas M. Chemotaxonomic Evaluation by Volatolomics Analysis of Fifty-Two Genotypes of Myrtus communis L. Plants. 2020 Sep 29;9(10):1288. [CrossRef]
- Tuberoso CIG, Barra A, Angioni A, Sarritzu E, Pirisi FM. Chemical composition of volatiles in Sardinian myrtle (Myrtus communis L.) alcoholic extracts and essential oils. J Agric Food Chem. 2006 Feb 22;54(4):1420–6. [CrossRef]
- Sharifzadeh A, Shokri H. Antifungal activity of essential oils from Iranian plants against fluconazole-resistant and fluconazole-susceptible Candida albicans. Avicenna J Phytomedicine. 2016;6(2):215–22.
- Giuliani C, Bottoni M, Milani F, Todero S, Berera P, Maggi F, et al. Botanic Garden as a Factory of Molecules: Myrtus communis L. subsp. communis as a Case Study. Plants Basel Switz. 2022 Mar 11;11(6):754. [CrossRef]
- Snoussi A, Essaidi I, Ben Haj Koubaier H, Zrelli H, Alsafari I, Živoslav T, et al. Drying methodology effect on the phenolic content, antioxidant activity of Myrtus communis L. leaves ethanol extracts and soybean oil oxidative stability. BMC Chem. 2021 Dec;15(1):31. [CrossRef]
- V González de Peredo A, Vázquez-Espinosa M, Espada-Bellido E, Jiménez-Cantizano A, Ferreiro-González M, Amores-Arrocha A, et al. Development of New Analytical Microwave-Assisted Extraction Methods for Bioactive Compounds from Myrtle (Myrtus communis L.). Mol Basel Switz. 2018 Nov 16;23(11):2992. [CrossRef]
- Bouaoudia-Madi N, Boulekbache-Makhlouf L, Madani K, Silva AMS, Dairi S, Oukhmanou–Bensidhoum S, et al. Optimization of Ultrasound-Assisted Extraction of Polyphenols from Myrtus communis L. Pericarp. Antioxidants. 2019 Jul 2;8(7):205. [CrossRef]
- Wenzel, RP. Health Care–Associated Infections: Major Issues in the Early Years of the 21st Century. Clin Infect Dis. 2007 Jul 15;45(Supplement_1):S85–8. [CrossRef]
- Nishikawara F, Nomura Y, Imai S, Senda A, Hanada N. Evaluation of cariogenic bacteria. Eur J Dent. 2007 Jan;1(1):31–9. [CrossRef]
- Nomura R, Matayoshi S, Otsugu M, Kitamura T, Teramoto N, Nakano K. Contribution of Severe Dental Caries Induced by Streptococcus mutans to the Pathogenicity of Infective Endocarditis. Freitag NE, editor. Infect Immun. 2020 Jun 22;88(7):e00897-19. [CrossRef]
- Patel, M. Oral Cavity and Candida albicans: Colonisation to the Development of Infection. Pathogens. 2022 Mar 10;11(3):335. [CrossRef]
- Marsh, PD. Dental Plaque as a Microbial Biofilm. Caries Res. 2004;38(3):204–11. [CrossRef]
- Sadeghi-Nejad B, Moghimipour E, Yusef Naanaie S, Nezarat S. Antifungal and antibacterial activities of polyherbal toothpaste against oral pathogens, in vitro. Curr Med Mycol. 2018 Jun;4(2):21–6. [CrossRef]
- Rahimvand L, Niakan M, Naderi NJ. The antibacterial effect of aquatic and methanolic extract of Myrtus communis on Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia. Iran J Microbiol. 2018 Aug;10(4):254–7.
- Zougagh S, Belghiti A, Rochd T, Zerdani I, Mouslim J. Medicinal and Aromatic Plants Used in Traditional Treatment of the Oral Pathology: The Ethnobotanical Survey in the Economic Capital Casablanca, Morocco (North Africa). Nat Prod Bioprospecting. 2019 Jan;9(1):35–48. [CrossRef]
- Caputo L, Capozzolo F, Amato G, De Feo V, Fratianni F, Vivenzio G, et al. Chemical composition, antibiofilm, cytotoxic, and anti-acetylcholinesterase activities of Myrtus communis L. leaves essential oil. BMC Complement Med Ther. 2022 May 20;22(1):142. [CrossRef]
- Sisay M, Bussa N, Gashaw T, Mengistu G. Investigating In Vitro Antibacterial Activities of Medicinal Plants Having Folkloric Repute in Ethiopian Traditional Medicine. J Evid-Based Integr Med. 2019 Jan 1;24:2515690X1988627. [CrossRef]
- Askari SF, Jahromi BN, Dehghanian A, Zarei A, Tansaz M, Badr P, et al. Effect of a novel herbal vaginal suppository containing myrtle and oak gall in the treatment of vaginitis: a randomized clinical trial. Daru J Fac Pharm Tehran Univ Med Sci. 2020 Dec;28(2):603–14. [CrossRef]
- Saraiva C, Silva AC, García-Díez J, Cenci-Goga B, Grispoldi L, Silva AF, et al. Antimicrobial Activity of Myrtus communis L. and Rosmarinus officinalis L. Essential Oils against Listeria monocytogenes in Cheese. Foods. 2021 May 17;10(5):1106. [CrossRef]
- Bellu E, Diaz N, Kralovič M, Divin R, Sarais G, Fadda A, et al. Myrtle-Functionalized Nanofibers Modulate Vaginal Cell Population Behavior While Counteracting Microbial Proliferation. Plants. 2022 Jun 15;11(12):1577. [CrossRef]
- Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol. 2005;21:319–46. [CrossRef]
- Poli JP, Guinoiseau E, de Rocca Serra D, Sutour S, Paoli M, Tomi F, et al. Anti-Quorum Sensing Activity of 12 Essential Oils on chromobacterium violaceum and Specific Action of cis-cis-p-Menthenolide from Corsican Mentha suaveolens ssp. Insularis. Mol Basel Switz. 2018 Aug 23;23(9):2125. [CrossRef]
- Badalamenti N, Ilardi V, Rosselli S, Bruno M, Maggi F, Leporini M, et al. Ferulago nodosa Subsp. geniculata (Guss.) Troia & Raimondo from Sicily (Italy): Isolation of Essential Oil and Evaluation of Its Bioactivity. Molecules. 2020 Jul 16;25(14):3249. [CrossRef]
- Onal S, Timur S, Okutucu B, Zihnioğlu F. Inhibition of alpha-glucosidase by aqueous extracts of some potent antidiabetic medicinal herbs. Prep Biochem Biotechnol. 2005;35(1):29–36. [CrossRef]
- Mehrbod P, Safari H, Mollai Z, Fotouhi F, Mirfakhraei Y, Entezari H, et al. Potential antiviral effects of some native Iranian medicinal plants extracts and fractions against influenza A virus. BMC Complement Med Ther. 2021 Oct 1;21(1):246. [CrossRef]
- Aparna MS, Yadav S. Biofilms: microbes and disease. Braz J Infect Dis. 2008 Dec;12(6):526–30. [CrossRef]
- Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 2017 Dec;15(12):740–55. [CrossRef]
- Khaleghi M, Khorrami S. Down-regulation of biofilm-associated genes in mecA-positive methicillin-resistant S. aureus treated with M. communis extract and its antibacterial activity. AMB Express. 2021 Jun 10;11(1):85. [CrossRef]
- Miladi H, Mili D, Ben Slama R, Zouari S, Ammar E, Bakhrouf A. Antibiofilm formation and anti-adhesive property of three mediterranean essential oils against a foodborne pathogen Salmonella strain. Microb Pathog. 2016 Apr;93:22–31. [CrossRef]
- Sateriale D, Imperatore R, Colicchio R, Pagliuca C, Varricchio E, Volpe MG, et al. Phytocompounds vs. Dental Plaque Bacteria: In vitro Effects of Myrtle and Pomegranate Polyphenolic Extracts Against Single-Species and Multispecies Oral Biofilms. Front Microbiol. 2020 Nov 5;11:592265. [CrossRef]
- Cordeiro L, Figueiredo P, Souza H, Sousa A, Andrade-Júnior F, Barbosa-Filho J, et al. Antibacterial and Antibiofilm Activity of Myrtenol against Staphylococcus aureus. Pharm Basel Switz. 2020 Jun 25;13(6):133. [CrossRef]
- Kwasny SM, Opperman TJ. Static biofilm cultures of Gram-positive pathogens grown in a microtiter format used for anti-biofilm drug discovery. Curr Protoc Pharmacol. 2010 Sep;Chapter 13:Unit 13A.8. [CrossRef]
- Selvaraj A, Jayasree T, Valliammai A, Pandian SK. Myrtenol Attenuates MRSA Biofilm and Virulence by Suppressing sarA Expression Dynamism. Front Microbiol. 2019 Sep 4;10:2027. [CrossRef]
- Selvaraj A, Valliammai A, Sivasankar C, Suba M, Sakthivel G, Pandian SK. Antibiofilm and antivirulence efficacy of myrtenol enhances the antibiotic susceptibility of Acinetobacter baumannii. Sci Rep. 2020 Dec 15;10(1):21975. [CrossRef]
- Cannas S, Molicotti P, Ruggeri M, Cubeddu M, Sanguinetti M, Marongiu B, et al. Antimycotic activity of Myrtus communis L. towards Candida spp. from isolates. J Infect Dev Ctries. 2013 Mar 14;7(3):295–8. [CrossRef]
- Barac A, Donadu M, Usai D, Spiric VT, Mazzarello V, Zanetti S, et al. Antifungal activity of Myrtus communis against Malassezia sp. isolated from the skin of patients with pityriasis versicolor. Infection. 2018 Apr;46(2):253–7. [CrossRef]
- Kordali S, Usanmaz A, Cakir A, Komaki A, Ercisli S. Antifungal and Herbicidal Effects of Fruit Essential Oils of Four Myrtus communis Genotypes. Chem Biodivers. 2016 Jan;13(1):77–84. [CrossRef]
- Yangui I, Zouaoui Boutiti M, Boussaid M, Messaoud C. Essential Oils of Myrtaceae Species Growing Wild in Tunisia: Chemical Variability and Antifungal Activity Against Biscogniauxia mediterranea, the Causative Agent of Charcoal Canker. Chem Biodivers. 2017 Jul;14(7):e1700058. [CrossRef]
- Eslami S, Ebrahimzadeh MA, Biparva P. Green synthesis of safe zero valent iron nanoparticles by Myrtus communis leaf extract as an effective agent for reducing excessive iron in iron-overloaded mice, a thalassemia model. RSC Adv. 2018;8(46):26144–55. [CrossRef]
- Ben Hsouna A, Dhibi S, Dhifi W, Mnif W, Ben Nasr hmed, Hfaiedh N. Chemical composition and hepatoprotective effect of essential oil from Myrtus communis L. flowers against CCL 4 -induced acute hepatotoxicity in rats. RSC Adv. 2019;9(7):3777–87. [CrossRef]
- Mansour RB, Beji RS, Wasli H, Zekri S, Ksouri R, Megdiche-Ksouri W, et al. Gastroprotective Effect of Microencapsulated Myrtus communis Essential Oil against Ethanol/HCl-Induced Acute Gastric Lesions. Mol Basel Switz. 2022 Feb 26;27(5):1566. [CrossRef]
- Cruciani S, Santaniello S, Garroni G, Fadda A, Balzano F, Bellu E, et al. Myrtus Polyphenols, from Antioxidants to Anti-Inflammatory Molecules: Exploring a Network Involving Cytochromes P450 and Vitamin D. Mol Basel Switz. 2019 Apr 17;24(8):1515. [CrossRef]
- Cruciani S, Santaniello S, Fadda A, Sale L, Sarais G, Sanna D, et al. Extracts from Myrtle Liqueur Processing Waste Modulate Stem Cells Pluripotency under Stressing Conditions. BioMed Res Int. 2019 Jun 11;2019:1–12. [CrossRef]
- González-de-Peredo AV, Vázquez-Espinosa M, Espada-Bellido E, Ferreiro-González M, Amores-Arrocha A, Palma M, et al. Discrimination of Myrtle Ecotypes from Different Geographic Areas According to Their Morphological Characteristics and Anthocyanins Composition. Plants Basel Switz. 2019 Sep 5;8(9):328. [CrossRef]
- Franco AM, Tocci N, Guella G, Dell’Agli M, Sangiovanni E, Perenzoni D, et al. Myrtle Seeds (Myrtus communis L.) as a Rich Source of the Bioactive Ellagitannins Oenothein B and Eugeniflorin D2. ACS Omega. 2019 Oct 1;4(14):15966–74. [CrossRef]
- Dhifi W, Jazi S, El Beyrouthy M, Sadaka C, Mnif W. Assessing the potential and safety of Myrtus communis flower essential oils as efficient natural preservatives against Listeria monocytogenes growth in minced beef under refrigeration. Food Sci Nutr. 2020 Apr;8(4):2076–87. [CrossRef]
- Soomro S, Mesaik MA, Shaheen F, Khan N, Halim SA, Ul-Haq Z, et al. Inhibitory Effects of Myrtucommuacetalone 1 (MCA-1) from Myrtus Communis on Inflammatory Response in Mouse Macrophages. Molecules. 2019 Dec 18;25(1):13. [CrossRef]
- Sisay M, Engidawork E, Shibeshi W. Evaluation of the antidiarrheal activity of the leaf extracts of Myrtus communis Linn (Myrtaceae) in mice model. BMC Complement Altern Med. 2017 Dec;17(1):103. [CrossRef]
- Capetti F, Cagliero C, Marengo A, Bicchi C, Rubiolo P, Sgorbini B. Bio-Guided Fractionation Driven by In Vitro α-Amylase Inhibition Assays of Essential Oils Bearing Specialized Metabolites with Potential Hypoglycemic Activity. Plants. 2020 Sep 21;9(9):1242. [CrossRef]
- Hager R, Pitsch J, Kerbl-Knapp J, Neuhauser C, Ollinger N, Iken M, et al. A High-Content Screen for the Identification of Plant Extracts with Insulin Secretion-Modulating Activity. Pharmaceuticals. 2021 Aug 17;14(8):809. [CrossRef]
- Ouedrhiri W, Mechchate H, Moja S, Mothana RA, Noman OM, Grafov A, et al. Boosted Antioxidant Effect Using a Combinatory Approach with Essential Oils from Origanum compactum, Origanum majorana, Thymus serpyllum, Mentha spicata, Myrtus communis, and Artemisia herba-alba: Mixture Design Optimization. Plants. 2021 Dec 20;10(12):2817. [CrossRef]
- Berendika M, Domjanić Drozdek S, Odeh D, Oršolić N, Dragičević P, Sokolović M, et al. Beneficial Effects of Laurel (Laurus nobilis L.) and Myrtle (Myrtus communis L.) Extract on Rat Health. Molecules. 2022 Jan 17;27(2):581. [CrossRef]
- Odeh D, Oršolić N, Berendika M, Đikić D, Domjanić Drozdek S, Balbino S, et al. Antioxidant and Anti-Atherogenic Activities of Essential Oils from Myrtus communis L. and Laurus nobilis L. in Rat. Nutrients. 2022 Mar 31;14(7):1465. [CrossRef]
- Torabi I, Sharififar F, Izadi A, Ayatollahi Mousavi SA. Inhibitory effects of different fractions separated from standardized extract of Myrtus communis L. against nystatin-susceptible and nystatin-resistant Candida albicans isolated from HIV positive patients. Heliyon. 2022 Mar;8(3):e09073. [CrossRef]

| Source/Country origin | Compounds | Usage | Method of identification | Ref. |
|---|---|---|---|---|
| Ethanolic leaf extract/Saudi Arabia | Acetol (0.64%), Methyl acrylate (0.50%) , Methyl acetate (0.19%) , Ethyl glycolate (0.13%) , Methyl pyruvate (0.57%), Ethyl orthoformate (1.99%) , 3-Hydroxymethylfuran (0.17%), Isopropyl isopropoxyacetate (0.36%) , Dihydroxyacetone (1.01%), Ethyl diethoxyacetate (0.23%), 1,2-Cyclopentanedione (0.32%), 5-MethyIfurfural (0.10%), (−)-β-Pinene (0.07%), 2,4-Dihydroxy-2,5-dimethyl-3(2H)-furanone (0.25%), 5-Diethoxymethyl-3-ethoxy-4,5-dihydro-isoxazole (0.12%) , Phenol (0.04%), 5-Diethoxymethyl-3-ethoxy-4,5-dihydro-isoxazole (0.14%), Glutaconic anhydride (0.09%), 2,2-Diethyl-3-methyl-1,3-oxazolidine (0.06%), D-Limonene (0.65%), 1, 8-Cineole (3.96%), 5-Hydroxyazouracil (0.17%), (+)-4-Carene (0.18%), Linalool (2.80%), 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- (0.49%), α-Terpineol (1.16%), L-α-Terpineol (1.12%), Catechol (0.49%), 5-Hydroxymethylfurfural (1.62%), Linalyl formate (1.93%), Linalyl acetate (0.97%), α-Terpinyl acetate (1.02%), Pyrogallol (9.11%), Methyleugenol (0.12%), β-Caryophyllene (0.56%), α -Isomethyl ionone (0.21%), Tyrosol (0.11%), 1,1,8a-Trimethyloctahydro-2,6-naphthalenedione (27.60 %), 3-Methyl-2-butenoic acid, undec-2-enyl ester (0.81%), Phytol acetate (0.42%), Cyclohexanecarboxaldehyde, 6-methyl-3-(1-methylethyl)-2-oxo-1-(3-oxobutyl)- (0.25%), Aspidinol (0.08%), L-Ascorbyl 2,6-Dipalmitate (0.66%), Phytol (0.19%) | Antibacterial activity against Gram positive bacteria |
GC-MS | (4) |
| Pulp of myrtle berries | Gallic acid; 52.2 ±0.9 mg/kg, Hydrolysable tannins; 498.0±20.5 mg/kg, Ellagic acid; 350.5 ±15.0 mg/kg Flavonols: Quercetin-3-O-galactoside 191.0 ±6.7 mg/kg, Quercetin-3-O-rhamnoside 66.6 ±3.0 mg/kg Anthocyanins: Cyanidin-3-glucoside 1.8±0.2 mg/kg, Petunidin-3-glucoside 3.6±0.3 mg/kg, Peonidin-3-glucoside 13.5 ±0.3 mg/kg, Malvidin-3-glucoside 42.0 ±2.4 mg/kg |
Antioxidant and anti-inflammatory activities | HPLC 1100 system coupled with with a DAD detector UV 6000 |
(68) |
| Seeds of Myrtle berries | Gallic acid; 137.0 ±6.8 mg/kg, Hydrolysable tannins; 11989.8 ±205.2 mg/kg, Ellagic acid; 726.9 ±28.3 mg/kg Flavonols: Quercetin-3-O-rhamnoside; 9.3 62.0 ±2.9 mg/kg, Quercetin-3-O-galactoside; 104.9 ±9.3 mg/kg Anthocyanins: Cyanidin-3-glucoside; ND, Petunidin-3-glucoside; ND, Peonidin-3-glucoside; ND, Malvidin-3-glucoside; ND |
Antioxidant and anti-inflammatory activities | HPLC 1100 system coupled with with a DAD detector UV 6000 |
|
| EO obtained from myrtle flowers gathered from the region of Elkef in Tunisia. | α-Pinene (35.20%), β-Pinene (0.24%), Myrcene (1.21%), Limonene (8.94%), 1,8-cineole (17.00%), Linalool (6.17%), α-Terpineol (3.86%), Myrtenol (0.42%), Linalyl acetate (0.85%), Myrtenyl acetate (1.26%), Terpenyl acetate (4.30%), Geranyl acetate (4.42%), Monoterpene hydrocarbons (46.07%), Oxygenated monoterpenes (40.77%), Methyl eugenol (6.98%), Transcaryophyllene (4.04%), α-Humulene (0.48%), Carophyllene oxide (2.49), and Sesquiterpenes (6.98%) | Antioxidant and antimicrobial activity | GC-MS | (72) |
| EO of M. communis leaves, Italy | Limonene (28.9%), α-Pinene (15.1%), Mirtenyl acetate (13.6%), Linalool (13.50%), Linalyl acetate (5.00%) | Anti α-amylase activity | GC-MS | (72) |
| EO from arial parts of M. communis, Northern Portugal | 1.8-cineole (14.80%), β-pinene (9.40%), verbenone (9.15%), borneol (8.72%), camphor (8.13%), terpinene-4-ol (7.66%), α-pinene (6.94%), linalool (3.78%), α-terpineol (3.52%), camphene (3.12%), D-limonene (3.16%), mirtenol (2.20%), α-terpinolene (1.74%), 2.4-tujadiene (0.78%), 3-carene (0.76%), cariophyllene oxide (0.73%), nerol (0.64%), α-terpinene (0.55%), o-cimene (0.41%), thujene (0.23%), and methyl-eugenol (0.20%) |
Anti L. monocytogenes activity | GC-MS | (45) |
| EO of M. communis leaves, Serbia | α-Pinene (0.38%), Limonene (0.60%), 1,8-Cineole (10.27%), Linalool (3.78%), Terpinolene (1.41%), cis Verbenol (0.91%), trans Verbenol (0.95%), Camphor (1.91%), α-Terpineol (7.12%), Nerol (5.97%), Geraniol (0.63%), Linalyl acetate (3.66%), Myrtenyl acetate (7.00%), Terpinyl acetate (1.01%), Neryl acetate (3.40%), and Geranyl acetate (16.36%) | Antifungal activity against Malassezia sp. clinical isolates |
GC-MS | (62) |
| EO of the aerial parts of M. communis, Iran | α-Pinene (27.87%), 1,8-Cineole (20.15%), Linalool (10.26%), α-Terpineol (7.64%), Linalyl acetate (6.17%), Germanyl acetate (4.87%), α-Terpinyl acetate (4.04%), Caryophyllene oxide (1.57%), trans-Caryophyllene (1.57%), Methyl eugenol (1.48%), α-Humulene (1.35%), β –Pinene (0.88%), 4-Terpineol (0.67%), δ-3-Carene (0.63%), γ-Terpinene (0.59%), α-Thujene (0.54%), and Others (1.93%) | Antifungal activity against fluconazole resistant and sensitive C. albicans | GC-MS | (29) |
| 70% ethanol extract M. communis leaves, Italy. | Phenolic acids (mg/KgDW) Gallic acid (1199.3), Hydrolysable tannins (21,858.3), myricetin-3-O-galactoside (1926.4), myricetin-3-O-rhamnoside (3902.9), quercetin-3-O-glucoside (104.1), quercetin-3-O-rhamnoside (192.0), quercetin 3-O-galactoside (85.9), and vitexin (280.0) |
Antibacterial and antifungal activity of nanofibers encapsulated with leaf extract and soaked in seed extract | HPLC coupled with DAD detector UV 6000 | (46) |
| M. communis leaves, Croatia | 5-O-galloylquinic acid (7.96%), Caffeic acid (1.81%), Catechin (0.05%), Digalloylquinic acid (0.79%), Ellagic acid (0.03%), Epicatechin (0.05%), Epicatechingallate (0.02%), Luteolin (1.11%), Luteolin glucoside (2.63%), Myricetin (14.48%), Myricetin-3-O-arabinoside (0.05%), Myricetin-3-O-galactoside (33.20%), Myricetin-3-O-rhamnoside (36.68%), Quercetin-3-glucoside (0.85%), Quercitrin (0.25%) | The effect of on colonic probiotic bacteria of rat and its health |
UPLC-MS | (78) |
| EO from M. communis leaves, Croatia | α-thujene (0.013 mg/ml), α-pinene (193.75 mg/ml), Camphene (1.08 mg/ml), β-pinene (2.35 mg/ml), Myrcene (2.68 mg/ml), α-phellandrene (1.66 mg/ml), 3-carene (0.48 mg/ml), p-cymene (3.45 mg/ml), d-limonene (69.25 mg/ml), Eucalyptol (244.6 mg/ml), Linalool (19.36 mg/ml), Terpinen-4-ol 31.62, α -terpineol (26.26 mg/ml), α -terpinyl acetate (4.53 mg/ml), Methyleugenol (9.88 mg/ml), Camphor (0.56 mg/ml), Carvone (2.14 mg/ml), Geraniol (6.21 mg/ml), Myrtenyl acetate (146.10 mg/ml), Estragole (0.013 mg/ml), Geranyl acetate (20.7 mg/ml), Myrtenol (3.92 mg/ml) | Antioxidative and antilipidemic effect in rats | GC-MS | (79) |
| Flower EO of M. communis from Tunisia | α -Pinene (35.20%), β -Pinene (0.24%), Myrcene (1.21%), Limonene (8.94%), 1,8-Cineol (17.0%), Linalool (6.17%), α -Terpineol (3.86%), Myrtenol (0.42%), Acetate linalyl (0.85%), Myrtenyl acetate (1.26%), Terpenyl acetate (4.30%), Acetate geranyl (4.42%), Methyl eugenol (6.98%), Trans caryophyllene (4.04%), α -Humulene (0.48%), Caryophyllene oxide (2.49%) | Hepato protective effects of EO in CCl4-induced hepatotoxicity in Wistar rats. | (66) | |
| EO prepared by hydro distillation from M. communis leaves of Italy origin | 3Z- Hexenal (0.1 ± 0.0%), 2E- Hexenal (0.1 ± 0.03%), Isobutyl isobutyrate (0.1 ± 0.02%), Heptyl isobutanoate (3.2 ± 0.3%), α-Thujene (0.4 ± 0.01%), α-Pinene (14.7 ± 1.2%), Sabinene (0.3 ± 0.03%), β-Pinene (0.3 ± 0.04%), δ-3-Carene (0.3 ± 0.02%), β- Myrcene (0.1 ± 0.01%), Butyl-2-methylbutanoate (0.2 ± 0.01%), α-Terpinene (0.1 ± 0.02%), 1,8-Cineole (21.9 ± 2.3%), E-β-Ocimene (1.1 ± 0.5%), γ-Terpinene (0.4 ± 0.03%), Terpinolene (0.1 ± 0.02%), Linalool (9.1 ± 1.6%), Myrcenol (0.2 ± 0.03%), cis-p-Menth-2-n-1-ol (0.1 ± 0.02%), allo Ocimene (0.8 ± 0.04%), trans-Pinocarveol (0.1 ± 0.01%), 3E-6Z-Nonadienol (0.1 ± 0.03%), Terpinen-4-ol (0.4 ± 0.05%), α-Terpineol (2.3 ± 0.4%), Myrtenal (0.1 ± 0.04%), Myrtenol (0.8 ± 0.03%), Methyl chavicol (0.2 ± 0.05%), Fraganol (0.1 ± 0.02%), Linalool acetate (0.8 ± 0.06%), trans-Pinocarvyl acetate (0.6 ± 0.03%), Carvacrol (0.1 ± 0.02%), Myrtenyl acetate (29.8 ± 2.4%), iso-dihydro-Carveol acetate (0.3 ± 0.02%), Carvyl acetate (0.1 ± 0.03%), α-Terpinyl acetate (0.5 ± 0.04%), Citronellyl acetate (0.1 ± 0.0%), Geranyl acetate (2.6 ± 0.5%), Methyl eugenol (0.9 ± 0.02%), Z-Caryophyllene (1.3 ± 0.06%), γ-Elemene (0.1 ± 0.01%), α-Humulene (1.1 ± 0.02%), p-Menth(1,8 dien)-9-ol (0.4 ± 0.02%), Bisabolol (0.2 ± 0.0%), Thymohydro quinone (0.7 ± 0.06%), Flavesone (0.2 ± 0%), Caryophyllene oxide (0.3 ± 0.02%), Humulene epoxide II (0.3 ± 0.01%), allo-Aromadendrene epoxide (0.1 ± 0.02%), n-Octadecanol (0.5 ± 0.06%) | Antibacterial, antibiofilm, and anti-acetylcholinesterase activities | GC-MS | (42) |
| EO of M. communis leaves encapsulated in maldodextrin, Portugal | α -pinene (11.10%), Limonene (1.63%), 1,8-Cineole (9.98%), Linalool oxide (0.38%), α -Terpinolene (0.46%), Linalool (14.92%), α -Terpineol (4.64%), Linalyl acetate (4.61%), Myrtenyl acetate (30.59%), Camphene (0.83%), Neryl acetate (0.38%), Geranyl acetate (1.62%), Methyleugenol (2.51%), α -Humulene (0.77%) | Gastroprotective activity in ethanol/HCl-induced acute gastric ulcers in Wistar rats | GC-MS | (67) |
| Plant parts/Country origin | Methods of preparation | Microorganisms | Zone of inhibition (mm) | MIC | MBC/MFC | Ref. |
|---|---|---|---|---|---|---|
| Leaves of Myrtus communis (Linn), Artemisia dracunculus, and Satureja khuzestanica, Iran | Polyherbal toothpaste obtained from leaf extracts | S. mutans, L. caseie, S. sanguis, S. salivarius, and C. albicans | 17-30 (L. caseie), 10-25 (C. albicans) and 15-20 for S. salivarius. | ND | ND | (39) |
| Leaves of Myrtus communis, Iran | Aquatic and methanolic extracts | P. gingivalis, A. actinomycetemcomitans, and P. intermediate. | At 50 mg/ml of methanolic extract: 16 (A. actinomycetemcomitans), 17 (P. gingivali), and 20 (P. intermediate). At 50 mg/ml of aqueous extract: 10 (P. gingivalis), 15 (A. actinomycetemcomitans), and 16 (P. intermediate) | 10 mg/ml for both the extracts | ND | (40) |
| Leaves of Myrtus communis, Iran | Ethanolic extract | Twenty-six clinical isolates of MRSA | 9 – 17.6 | 1.56 – 25 mg/ml | 3.125 – 50 mg/ml | (54) |
| Leaves of M. communis, Italy | Essential oil | S. aureus DMS 25923, P. aeruginosa ATCC 50071, P. carotovorum DSM 102074, and L. monocytogenes ATCC 7644, E. coli DSM 8579 | ND | 6, 3, 4, 5, and 3 mg/ml, respectively. | ND | (42) |
| Leaves of M. communis, Ethiopia | 80% methanol. 10 mg/ml used of zone of inhibition determination | Staphylococcus aureus (ATCC 25923) | 21.83 + 0.44 | 0.80 (mg/ml) |
4.00 (mg/ml) |
(43) |
| Escherichia coli (ATCC 25922) | 13.33 + 0.33 | 0.16 mg/ml | 0.8 mg/ml | |||
| Salmonella typhi (ATCC 13062) | 13.33 + 0.33 | 0.032 mg/ml | 0.8 mg/ml | |||
| Shigella flexneri (ATCC 12022) | 20.83 + 0.93 | 0.16 mg/ml | 4.00 mg/ml | |||
| Pseudomonas aeruginosa (ATCC 27853) | 14.83 + 0.44 | 0.8 mg/ml | 4.00 mg/ml | |||
| Proteus mirabilis (ATCC 29906) | 12.17 + 0.73 | 0.8 mg/ml | 4.00 mg/ml | |||
| Myrtenol purchased from Merck/Sigma-Aldrich® (Darmstadt/Germany) | Purchased | Ten laboratory strains and two reference strains ATCC-25923 and ATCC-13150 of S. aureus | ND | 128 μg/ml | 128 μg/ml | (57) |
| Myrtenol purchased from Sigma-Aldrich, India. | Purchased | MRSA reference strain ATCC 33591 and Three MRSA clinical strains | ND | MIC of 600 μg/ml and MBIC of 300 μg/ml | ND | (59) |
| Myrtenol purchased from Sigma-Aldrich, India. | Purchased | Two reference strains of Acinetobacter baumannii, AB-ATCC19606, AB-MTCC 9829, and two clinical isolates AB-A103 and AB-A42-4 | ND | MIC 500 μg/ml for AB-ATCC19606, AB-MTCC 9829, AB-A103 and 600 μg/ml for AB-A42-4 and MBIC of 200 μg/ml for all strains. | ND | (60) |
| Oenothein B isolated from myrtle seeds | Successively extracted in hexane and 70% acetone in water. | Clinical isolates from human gut C. albicans C. parapsilosis C and C. tropicalis | ND | <8 - 64 μg/ml | ND | (71) |
| M. communis flowers, Tunisia |
EO obtained by hydro-distillation in a Clevenger |
Gram positive | (72) |
|||
| B. subtilis ATCC 6633 | 18 ± 0.7 | 0.10 ± 0.7 % | 0.78 ± 0.1% | |||
| B. cereus ATCC 14579 | 22 ± 0.5 | 0.39 ± 0.8% | 0.78 ± 0.3% | |||
| S. aureus ATCC 25923 | 20 ± 0.7 | 0.39 ± 0.4% | 1.56 ± 0.5% | |||
| S. epidermis ATCC 12228 | 15 ± 0.4 | 0.19 ± 0.4% | 1.56 ± 0.2% | |||
| E. faecalis ATCC29212 | 15 ± 0.5 | 0.10 ± 0.7% | 0.78 ± 0.04% | |||
| L. monocytogenes ATCC19117 | 22 ± 0.4 | 0.40 ± 0.2% | 0.8 ± 0.022% | |||
| Gram negative | ||||||
| S.enterica ATCC 43972 | 16 ± 0.6 | 1.26 ± 0.3% | 3.12 ± 0.8% | |||
| E. coli ATCC 25922 | 14 ± 0.3 | 0.78 ± 04% | 1.56 ± 0.4% | |||
| P. aeruginosa ATCC 9027 | 15 ± 0.5 | 1.56 ± 0.5% | 3.12 ± 0.7% | |||
| Arial parts of M. communis, Northern Tunisia | EO obtained by hydro distillation in Clevenger | Listeria monocytogenes | ND | 31.25 μL/mL | (45) | |
| Leaves of M. communis, Serbia | EO obtained by hydro distillation in Clevenger | M. furfur | ND | 31.25μL/mL | 62.5μL/mL | (62) |
| M. sympodialis | ND | 62.5 μL/mL | 125 μL/mL | |||
| M. slooffiae | ND | 31.25 μL/mL | 62.5 μL/mL | |||
| M. globose | ND | 31.25 μL/mL | 350 μL/mL | |||
| M. obtuse | ND | 62.5 μL/mL | 125 μL/mL | |||
| M. japonica | ND | 31.25 μL/mL | 62.5 μL/mL | |||
| M. restricta | ND | 125 μL/mL | 600 μL/mL | |||
| Leaves of M. communis, Italy | EO by Hydrodistillation in Clevenger | Clinical isolates of candida spp. C. albicans C. glabrata, C. krusei, C. tropicalis and C. parapsilosis | ND | 2 μg/ml | (61) | |
| Leaves of M. communis, Iran |
Total extract in 80% methanol by sonication | C. albicans (ATCC 76645) Nystatin sensitive | ND | 125 μg/ml | 500 μg/ml | (80) |
| C. albicans Nystatin-resistant | ND | 125 μg/ml | >1000μg/ml | |||
| Methanol fraction | C. albicans (ATCC 76645) Nystatin sensitive | ND | 125 μg/ml | >1000μg/ml | ||
| C. albicans Nystatin-resistant | ND | 62.5 μg/ml | >1000μg/ml | |||
| Ethyl acetate fraction | C. albicans (ATCC 76645) Nystatin sensitive | ND | 250 μg/ml | >1000 | ||
| C. albicans Nystatin-resistant | ND | 250 μg/ml | >1000μg/ml | |||
| Chloroform fraction | C. albicans (ATCC 76645) Nystatin sensitive | ND | 62.5 μg/ml | 1000 μg/ml | ||
| C. albicans Nystatin-resistant | ND | 62.5 μg/ml | 1000 μg/ml | |||
| Petroleum ether fraction | C. albicans (ATCC 76645) Nystatin sensitive | ND | 125 μg/ml | 250 μg/ml | ||
| C. albicans Nystatin-resistant | ND | 125 μg/ml | 250 μg/ml | |||
| Aerial parts of M. communis, Iran | EO by Hydrodistillation in Clevenger |
C. albicans fluconazole resistant | ND | 3200 μg/ml | 3800 μg/ml | (29) |
| C. albicans fluconazole sensitive | ND | 3000 μg/ml | 3600 μg/ml | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
