Submitted:
04 January 2025
Posted:
07 January 2025
You are already at the latest version
Abstract
Aging kills ~100,000 people a day - more than any other cause of death combined. The exact causes of aging have been much discussed, but the most pressing issue with regard to aging appears to be lipofuscin accumulation. That is, the accumulation of indigestible cellular garbage that needs to be removed from our cells, then the body. In this piece, I will explain why I think “getting rid of the garbage” should be at least one of our main goals with regard to longevity research for now. Of course, if cancer strikes before then, it will need to be addressed. Curative cancer therapy approaches are discussed herein. I also list the other causes of aging aside from lipofuscin accumulation - and how we can treat them. The same foundation on which the systemic lipofuscin removal approach is built can be used for treating genetic disorders and acquired illnesses as well.
Keywords:
Introduction
Lipofuscin Removal
Cancer
Senescent Cells
Telomere Shortening
Memory B and T Cells
Mitochondrial DNA Mutations
Nuclear DNA Epigenetic Drift, Damage, and Mutations
General Dilapidation of Body Structures
Discussion
Conclusion
References
- Terman A and Brunk, UT. Lipofuscin. The International Journal of Biochemistry & Cell Biology 2004;36(8):1400–1404; [CrossRef]
- Zealley B and de Grey ADNJ. Strategies for Engineered Negligible Senescence. Gerontology 2013;59(2):183–189; [CrossRef]
- Kang Y-K, Min B, Eom J, et al. Different phases of aging in mouse old skeletal muscle. Aging 2022;14(1):143–160; [CrossRef]
- López-Otín C, Blasco MA, Partridge L, et al. Hallmarks of aging: An expanding universe. Cell 2023;186(2):243–278; [CrossRef]
- Gaikwad S, Puangmalai N, Sonawane M, et al. Nasal tau immunotherapy clears intracellular tau pathology and improves cognitive functions in aged tauopathy mice. Science Translational Medicine 2024;16(754):eadj5958; [CrossRef]
- Planque SA, Nishiyama Y, Hara M, et al. Physiological IgM class catalytic antibodies selective for transthyretin amyloid. J Biol Chem 2014;289(19):13243–13258; [CrossRef]
- Lei Y, Nosoudi N, Vyavahare N. Targeted chelation therapy with EDTA-loaded albumin nanoparticles regresses arterial calcification without causing systemic side effects. J Control Release 2014;196:79–86;
- Zieman SJ, Melenovsky V, Clattenburg L, et al. Advanced glycation endproduct crosslink breaker (alagebrium) improves endothelial function in patients with isolated systolic hypertension. J Hypertens 2007;25(3):577–583; [CrossRef]
- STREETER M, GODDARD TN, CRAWFORD JM, et al. Identification of Glucosepane Cross-Link Breaking Enzymes. Diabetes 2018;67(Supplement_1):1229-P; [CrossRef]
- de Grey, AD. Appropriating microbial catabolism: a proposal to treat and prevent neurodegeneration. Neurobiology of aging 2006;27(4):589–595.
- Streeter MD, Rowan S, Ray J, et al. Generation and Characterization of Anti-Glucosepane Antibodies Enabling Direct Detection of Glucosepane in Retinal Tissue. ACS Chem Biol 2020;15(10):2655–2661; [CrossRef]
- Furber, JD. Extracellular glycation crosslinks: prospects for removal. Rejuvenation Res 2006;9(2):274–278; [CrossRef]
- Siebert S, Farrell JA, Cazet JF, et al. Stem cell differentiation trajectories in Hydra resolved at single-cell resolution. Science 2019;365(6451):eaav9314; [CrossRef]
- Murad R, Macias-Muñoz A, Wong A, et al. Coordinated Gene Expression and Chromatin Regulation during Hydra Head Regeneration. Genome Biology and Evolution 2021;13(12):evab221; [CrossRef]
- Aufschnaiter R, Zamir EA, Little CD, et al. In vivo imaging of basement membrane movement: ECM patterning shapes Hydra polyps. Journal of Cell Science 2011;124(23):4027–4038; [CrossRef]
- Birch J, Gil J. Senescence and the SASP: many therapeutic avenues. Genes Dev 2020;34(23–24):1565–1576; [CrossRef]
- Kabacik S, Lowe D, Fransen L, et al. The Relationship between Epigenetic Age and the Hallmarks of Aging in Human Cells. Nat Aging 2022;2(6):484–493; [CrossRef]
- Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 2020;588(7836):124–129; [CrossRef]
- Wang S, Xia P, Ye B, et al. Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency. Cell Stem Cell 2013;13(5):617–625; [CrossRef]
- Anonymous. Nebula Genomics - DNA Testing. n.d. Available from: https://nebula.org/whole-genome-sequencing-dna-test/ [Last accessed: 11/16/2022].
- Stewart JB, Chinnery PF. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat Rev Genet 2021;22(2):106–118; [CrossRef]
- Cortese FAB, Santostasi G. Whole-Body Induced Cell Turnover: A Proposed Intervention for Age-Related Damage and Associated Pathology. Rejuvenation Res 2016;19(4):322–336; [CrossRef]
- Renteln, M. Toward Systemic Lipofuscin Removal. Rejuvenation Research 2024;27(5):171–179; [CrossRef]
- Renteln, M. Conditional Replication of Oncolytic Viruses Based on Detection of Oncogenic MRNA. Gene Therapy 2018;25(1):1–3; [CrossRef]
- Renteln, MA. Promoting Oncolytic Vector Replication with Switches that Detect Ubiquitous Mutations. CCTR 2024;20(1):40–52; [CrossRef]
- Renteln, M. Targeting clonal mutations with synthetic microbes. Critical Reviews in Oncology/Hematology 2025;206:104572; [CrossRef]
- Mo F, Watanabe N, Omdahl KI, et al. Engineering T cells to suppress acute GVHD and leukemia relapse after allogeneic hematopoietic stem cell transplantation. Blood 2023;141(10):1194–1208; [CrossRef]
- Rui X, Alvarez Calderon F, Wobma H, et al. Human OX40L–CAR-Tregs target activated antigen-presenting cells and control T cell alloreactivity. Sci Transl Med 2024;16(769):eadj9331; [CrossRef]
- Wellhausen N, O’Connell RP, Lesch S, et al. Epitope base editing CD45 in hematopoietic cells enables universal blood cancer immune therapy. Sci Transl Med 2023;15(714):eadi1145; [CrossRef]
- Renteln, M. Purging Autologous HSCs via Detection of Clonal Mutations. 2024; [CrossRef]
- García-Cao I, García-Cao M, Martín-Caballero J, et al. ‘Super P53’ Mice Exhibit Enhanced DNA Damage Response, Are Tumor Resistant and Age Normally. EMBO J 2002;21(22):6225–6235; [CrossRef]
- Zhao Y, Burikhanov R, Qiu S, et al. Cancer Resistance in Transgenic Mice Expressing the SAC Module of Par-4. Cancer Res 2007;67(19):9276–9285; [CrossRef]
- Garcia-Cao I, Song MS, Hobbs RM, et al. Systemic Elevation of PTEN Induces a Tumor-Suppressive Metabolic State. Cell 2012;149(1):49–62; [CrossRef]
- Grey ADNJ, de. Whole-Body Interdiction of Lengthening of Telomeres: A Proposal for Cancer Prevention. Front Biosci 2005;10(1–3):2420; [CrossRef]
- MacKenzie D, Watters AK, To JT, et al. ALT Positivity in Human Cancers: Prevalence and Clinical Insights. Cancers (Basel) 2021;13(10):2384; [CrossRef]
- Gäbelein CG, Reiter MA, Ernst C, et al. Engineering Endosymbiotic Growth of E. coli in Mammalian Cells. ACS Synth Biol 2022;11(10):3388–3396; [CrossRef]
- Kose H, Karr TL. Organization of Wolbachia pipientis in the Drosophila fertilized egg and embryo revealed by an anti-Wolbachia monoclonal antibody. Mechanisms of Development 1995;51(2):275–288; [CrossRef]
- He Y, Zhang X, Chang J, et al. Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. Nat Commun 2020;11(1):1996; [CrossRef]
- Simonetta KR, Taygerly J, Boyle K, et al. Prospective discovery of small molecule enhancers of an E3 ligase-substrate interaction. Nat Commun 2019;10(1):1402; [CrossRef]
- Baar MP, Brandt RMC, Putavet DA, et al. Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell 2017;169(1):132-147.e16; [CrossRef]
- Ming X, Yang Z, Huang Y, et al. A chimeric peptide promotes immune surveillance of senescent cells in injury, fibrosis, tumorigenesis and aging. Nat Aging 2024;1–20; [CrossRef]
- Amor C, Fernández-Maestre I, Chowdhury S, et al. Prophylactic and long-lasting efficacy of senolytic CAR T cells against age-related metabolic dysfunction. Nat Aging 2024;4(3):336–349; [CrossRef]
- Jefferson RE, Oggier A, Füglistaler A, et al. Computational design of dynamic receptor—peptide signaling complexes applied to chemotaxis. Nat Commun 2023;14(1):2875; [CrossRef]
- Lee C, Yen K, Cohen P. Humanin: a harbinger of mitochondrial-derived peptides? Trends in Endocrinology & Metabolism 2013;24(5):222–228; [CrossRef]
- Coradduzza D, Congiargiu A, Chen Z, et al. Humanin and Its Pathophysiological Roles in Aging: A Systematic Review. Biology (Basel) 2023;12(4):558; [CrossRef]
- Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 2016;530(7589):184–189; [CrossRef]
- Renteln, M. Microglial Replacement and COURIER or SPIT for Neuronal Gene Editing [V4]. https://www.preprints.org/manuscript/202404.1620/v4.
- Crocco P, Rango FD, Dato S, et al. Telomere length as a function of age at population level parallels human survival curves. Aging 2021;13(1):204–218; [CrossRef]
- Guidi N, Marka G, Sakk V, et al. An Aged Bone Marrow Niche Restrains Rejuvenated Hematopoietic Stem Cells. STEM CELLS 2021;39(8):1101–1106; [CrossRef]
- Landspersky T, Saçma M, Rivière J, et al. Autophagy in Mesenchymal Progenitors Protects Mice against Bone Marrow Failure after Severe Intermittent Stress. Blood 2022;139(5):690–703; [CrossRef]
- Zhang X, Chen W, Gao Q, et al. Rapamycin Directly Activates Lysosomal Mucolipin TRP Channels Independent of MTOR. PLOS Biology 2019;17(5):e3000252; [CrossRef]
- Se A, S A, Mk T, et al. Constitutive Telomerase Expression Promotes Mammary Carcinomas in Aging Mice. Proceedings of the National Academy of Sciences of the United States of America 2002;99(12); [CrossRef]
- Tomás-Loba A, Flores I, Fernández-Marcos PJ, et al. Telomerase Reverse Transcriptase Delays Aging in Cancer-Resistant Mice. Cell 2008;135(4):609–622; [CrossRef]
- Zhu T-Y, Hu P, Mi Y-H, et al. Telomerase reverse transcriptase gene knock-in unleashes enhanced longevity and accelerated damage repair in mice. Aging Cell n.d.;n/a(n/a):e14445; [CrossRef]
- Bernardes de Jesus B, Vera E, Schneeberger K, et al. Telomerase Gene Therapy in Adult and Old Mice Delays Aging and Increases Longevity without Increasing Cancer. EMBO Mol Med 2012;4(8):691–704; [CrossRef]
- Jaijyan DK, Selariu A, Cruz-Cosme R, et al. New Intranasal and Injectable Gene Therapy for Healthy Life Extension. Proc Natl Acad Sci U S A 2022;119(20):e2121499119; [CrossRef]
- Sewell, PE. Systemic Human Htert Aav Gene Transfer Therapy And The Effect On Telomere Length And Biological Age, A Case Report. J Regen Biol Med 2022. [CrossRef] [PubMed]
- Tomás-Loba A, Flores I, Fernández-Marcos PJ, et al. Telomerase Reverse Transcriptase Delays Aging in Cancer-Resistant Mice. Cell 2008;135(4):609–622; [CrossRef]
- Weng, N. Aging of the Immune System: How Much Can the Adaptive Immune System Adapt? Immunity 2006;24(5):495–499; [CrossRef]
- Breda L, Papp TE, Triebwasser MP, et al. In vivo hematopoietic stem cell modification by mRNA delivery. Science 2023;381(6656):436–443; [CrossRef]
- Bujarrabal-Dueso A, Sendtner G, Meyer DH, et al. The DREAM complex functions as conserved master regulator of somatic DNA-repair capacities. Nat Struct Mol Biol 2023;30(4):475–488; [CrossRef]
- Anonymous. Generian: Pipeline and Targets. n.d. Available from: https://www.generian.com/pipeline/ [Last accessed: 9/29/2024].
- Torra A, Parent A, Cuadros T, et al. Overexpression of TFEB Drives a Pleiotropic Neurotrophic Effect and Prevents Parkinson’s Disease-Related Neurodegeneration. Mol Ther 2018;26(6):1552–1567; [CrossRef]
- Bredenkamp N, Nowell CS, Blackburn CC. Regeneration of the aged thymus by a single transcription factor. Development 2014;141(8):1627–1637; [CrossRef]
- Zook EC, Krishack PA, Zhang S, et al. Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells. Blood 2011;118(22):5723–5731; [CrossRef]
- Uddin MM, Ohigashi I, Motosugi R, et al. Foxn1-β5t transcriptional axis controls CD8+ T-cell production in the thymus. Nat Commun 2017;8(1):14419; [CrossRef]
- Castner SA, Gupta S, Wang D, et al. Longevity factor klotho enhances cognition in aged nonhuman primates. Nat Aging 2023;3(8):931–937; [CrossRef]
- Zhang S, Ayemoba CE, Staulo AMD, et al. Platelet Factor 4 (PF4) Regulates Hematopoietic Stem Cell Aging. 2024;2024.11.25.625252; [CrossRef]
- Zhang B, Lee DE, Trapp A, et al. Multi-omic rejuvenation and lifespan extension on exposure to youthful circulation. Nat Aging 2023;3(8):948–964; [CrossRef]
- Hayal TB, Wu C, Abraham D, et al. The Impact of CD45-Antibody-Drug Conjugate Conditioning on Clonal Dynamics and Immune Tolerance Post HSPC Transplantation in Rhesus Macaques. Blood 2023;142:3419; [CrossRef]
- Best, BP. Nuclear DNA Damage as a Direct Cause of Aging. Rejuvenation Research 2009;12(3):199–208; [CrossRef]
- Vijg J, Schumacher B, Abakir A, et al. Mitigating age-related somatic mutation burden. Trends in Molecular Medicine 2023;29(7):530–540; [CrossRef]
- Cortese FAB, Santostasi G. Whole-Body Induced Cell Turnover: A Proposed Intervention for Age-Related Damage and Associated Pathology. Rejuvenation Res 2016;19(4):322–336; [CrossRef]
- Muyas F, Sauer CM, Valle-Inclán JE, et al. De novo detection of somatic mutations in high-throughput single-cell profiling data sets. Nat Biotechnol 2024;42(5):758–767; [CrossRef]
- Phinney DG, Di Giuseppe M, Njah J, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun 2015;6:8472; [CrossRef]
- Wang Q, Yu J, Kadungure T, et al. ARMMs as a versatile platform for intracellular delivery of macromolecules. Nat Commun 2018;9(1):960; [CrossRef]
- Mc Cafferty S, De Temmerman J, Kitada T, et al. In Vivo Validation of a Reversible Small Molecule-Based Switch for Synthetic Self-Amplifying mRNA Regulation. Molecular Therapy 2021;29(3):1164–1173; [CrossRef]
- Perkovic M, Gawletta S, Hempel T, et al. A trans-amplifying RNA simplified to essential elements is highly replicative and robustly immunogenic in mice. Mol Ther 2023;31(6):1636–1646; [CrossRef]
- Ekstrand MI, Falkenberg M, Rantanen A, et al. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet 2004;13(9):935–944; [CrossRef]
- Murakami H, Ota A, Simojo H, et al. Polymorphisms in Control Region of mtDNA Relates to Individual Differences in Endurance Capacity or Trainability. The Japanese Journal of Physiology 2002;52(3):247–256; [CrossRef]
- Castañeda V, Haro-Vinueza A, Salinas I, et al. The MitoAging Project: Single nucleotide polymorphisms (SNPs) in mitochondrial genes and their association to longevity. Mitochondrion 2022;66:13–26; [CrossRef]
- Auber M, Svenningsen P. An estimate of extracellular vesicle secretion rates of human blood cells. Journal of Extracellular Biology 2022;1(6):e46; [CrossRef]
- Zekonyte U, Bacman SR, Smith J, et al. Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo. Nat Commun 2021;12(1):3210; [CrossRef]
- Shoop WK, Lape J, Trum M, et al. Efficient elimination of MELAS-associated m.3243G mutant mitochondrial DNA by an engineered mitoARCUS nuclease. Nat Metab 2023;5(12):2169–2183; [CrossRef]
- Javanpour AA, Liu CC. Genetic compatibility and extensibility of orthogonal replication. ACS Synth Biol 2019;8(6):1249–1256; [CrossRef]
- Zhu J, Batra H, Ananthaswamy N, et al. Design of bacteriophage T4-based artificial viral vectors for human genome remodeling. Nat Commun 2023;14(1):2928; [CrossRef]
- Chuang E, Barai M, Schuster BS, et al. Modulating material properties of cargo protein to probe exopher biology. Biophysical Journal 2024;123(3):217a–218a; [CrossRef]
- Tigges M, Marquez-Lago TT, Stelling J, et al. A tunable synthetic mammalian oscillator. Nature 2009;457(7227):309–312; [CrossRef]
- Watson JL, Krüger LK, Ben-Sasson AJ, et al. Synthetic Par polarity induces cytoskeleton asymmetry in unpolarized mammalian cells. Cell 2023;186(21):4710-4727.e35; [CrossRef]
- Hase K, Kimura S, Takatsu H, et al. M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat Cell Biol 2009;11(12):1427–1432; [CrossRef]
- Schiller C, Diakopoulos KN, Rohwedder I, et al. LST1 promotes the assembly of a molecular machinery responsible for tunneling nanotube formation. Journal of Cell Science 2013;126(3):767–777; [CrossRef]
- Ahmad T, Mukherjee S, Pattnaik B, et al. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. The EMBO Journal 2014;33(9):994–1010; [CrossRef]
- Grillot-Courvalin C, Goussard S, Huetz F, et al. Functional gene transfer from intracellular bacteria to mammalian cells. Nat Biotechnol 1998;16(9):862–866; [CrossRef]
- Zare M, Farhadi A, Zare F, et al. Genetically engineered E. coli invade epithelial cells and transfer their genetic cargo into the cells: an approach to a gene delivery system. Biotechnol Lett 2023;45(7):861–871; [CrossRef]
- Nguyen BN, Peterson BN, Portnoy DA. Listeriolysin O: A phagosome-specific cytolysin revisited. Cellular Microbiology 2019;21(3):e12988; [CrossRef]
- Yoon YG, Koob MD. Transformation of isolated mammalian mitochondria by bacterial conjugation. Nucleic Acids Research 2005;33(16):e139; [CrossRef]
- Xu Z, Rao Y, Peng B. Protocol for microglia replacement by peripheral blood (Mr PB). STAR Protocols 2021;2(2):100613; [CrossRef]
- Yoon YG, Koob MD. Intramitochondrial transfer and engineering of mammalian mitochondrial genomes in yeast. Mitochondrion 2019;46:15–21; [CrossRef]
- https://bionumbers.hms.harvard.edu/bionumber.aspx?s=n&v=2&id=108845.
- Feldmesser M, Kress Y, Casadevall A. Dynamic changes in the morphology of Cryptococcus neoformans during murine pulmonary infection. Microbiology 2001;147(8):2355–2365; [CrossRef]
- Luo Y, Alvarez M, Xia L, et al. The Outcome of Phagocytic Cell Division with Infectious Cargo Depends on Single Phagosome Formation. PLoS ONE 2008;3(9):e3219; [CrossRef]
- Yoon YG, Haug CL, Koob MD. Interspecies mitochondrial fusion between mouse and human mitochondria is rapid and efficient. Mitochondrion 2007;7(3):223–229; [CrossRef]
- Yamada Y, Fukuda Y, Harashima H. An analysis of membrane fusion between mitochondrial double membranes and MITO-Porter, mitochondrial fusogenic vesicles. Mitochondrion 2015;24:50–55; [CrossRef]
- Best, BP. Nuclear DNA Damage as a Direct Cause of Aging. Rejuvenation Research 2009;12(3):199–208; [CrossRef]
- Ocampo A, Reddy P, Martinez-Redondo P, et al. In Vivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming. Cell 2016;167(7):1719-1733.e12; [CrossRef]
- Horns F, Martinez JA, Fan C, et al. Engineering RNA export for measurement and manipulation of living cells. Cell 2023;186(17):3642-3658.e32; [CrossRef]
- Blokzijl F, de Ligt J, Jager M, et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 2016;538(7624):260–264; [CrossRef]
- Ren P, Dong X, Vijg J. Age-related somatic mutation burden in human tissues. Front Aging 2022;3; [CrossRef]
- Biotechnologies, R. Repair Biotechnologies Announces 48% Reversal of Atherosclerotic Plaque Lipids in a Preclinical Mouse Study. 2021. Available from: https://www.repairbiotechnologies.com/repair-biotechnologies-announces-48-reversal-of-atherosclerotic-plaque-in-a-preclinical-mouse-study/ [Last accessed: 12/30/2024].
- Reason. Repair Biotechnologies Demonstrates Rapid Reversal of Atherosclerosis in Mouse Models. 2024. Available from: https://www.repairbiotechnologies.com/repair-biotechnologies-demonstrates-rapid-reversal-of-atherosclerosis-in-mouse-models/ [Last accessed: 12/30/2024].
- Anonymous. Reason Presents at the Rejuvenation Startup Summit 2024. 2024. https://www.youtube.com/watch?v=wMd3Gjic754.
- Amaral, S. Aging and male reproductive function A mitochondrial perspective. Front Biosci 2013;S5(1):181–197; [CrossRef]
- Keogh M, Chinnery PF. Hereditary mtDNA Heteroplasmy: A Baseline for Aging? Cell Metabolism 2013;18(4):463–464; [CrossRef]
- Shokolenko IN, Wilson GL, Alexeyev MF. Aging: A mitochondrial DNA perspective, critical analysis and an update. World Journal of Experimental Medicine 2014;4(4):46–57; [CrossRef]
- Latorre-Pellicer A, Moreno-Loshuertos R, Lechuga-Vieco AV, et al. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature 2016;535(7613):561–565; [CrossRef]
- Roubertoux PL, Sluyter F, Carlier M, et al. Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nat Genet 2003;35(1):65–69; [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).