Preprint
Article

This version is not peer-reviewed.

Natural products as Potential Inhibitors of APH(3')-IIIa of Enterococcus faecalis: An In-silico Perspective

Submitted:

06 November 2022

Posted:

08 November 2022

You are already at the latest version

Abstract
Enterococcus faecalis is a bacterium that can develop a multidrug resistance profile associated with the community as well as nosocomial-acquired infections. Among the treatment options for these infections are aminoglycosides combined with bacterial cell wall inhibitors such as beta-lactams, since E. faecalis is intrinsically resistant to aminoglycosides. One of its most representative resistance mechanisms is the expression of aminoglycoside-modifying enzymes, such as the aminoglycoside phosphotransferase type IIIa of E. faecalis (EfAPH(3')-IIIa). This enzyme acts by phosphorylating aminoglycosides in an ATP-dependent reaction, modifying the 3' position of hydroxyl groups of these antibiotics. Considering this scenario, 3,092 natural products obtained from the ZINC22 database were analyzed to select molecules with the highest affinity for the nucleotide-binding pocket of EfAPH(3')-IIIa, which could be potential aminoglycoside adjuvants. The molecules that showed the best-score results obtained from ensemble docking-based virtual screening were ZINC000000952700 (BS-1), ZINC000014793040 (BS-2) and ZINC000015498603 (BS-3). The most promising results were for BS-2, a flavone derivative, due to its improved stability profile in molecular dynamics simulation (average values of RMSD of 0.23 nm, and Rg of 1.94 nm), binding free energy calculations (average ΔG total of -35.3 nm), as well as better toxicological profile (lower probability of hepatotoxicity, carcinogenic, immunotoxicity, mutagenicity, and cytotoxicity effects), compared to BS-1 and BS-3. These results allow us to propose that a flavone derivative may act as an adjuvant to aminoglycosides in the treatment of E. faecalis infections, acting as an inhibitor in the nucleotide-binding pocket of EfAPH(3')-IIIa.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated