Preprint
Article

This version is not peer-reviewed.

PDF Malware Detection Based on Optimizable Decision Trees

A peer-reviewed article of this preprint also exists.

Submitted:

06 September 2022

Posted:

07 September 2022

You are already at the latest version

Abstract
Portable Document Format (PDF) files are one of the most universally used file types. This has fascinated hackers to develop methods to use these normally innocent PDF files to create security threats via infection vectors PDF files. This is usually realized by hiding embedded malicious code in the victims’ PDF documents to infect their machines. This, of course, results in PDF Malware and requires techniques to identify benign files from malicious files. Research studies indicated that machine-learning methods provide efficient detection techniques against such malware. In this paper, we present a new detection system that can analyze PDF documents in order to identify benign PFD files from malware PFD files. The proposed system makes use of the AdaBoost decision tree with optimal hyperparameters, which is trained and evaluated on a modern-inclusive dataset, viz. Evasive-PDFMal2022. The investigational assessment demonstrates a lightweight-accurate PDF detection system, achieving a 98.84% prediction accuracy with a short prediction interval of 2.174 μSec. To this end, the proposed model outperforms other state-of-the-art models in the same study area. Hence, the proposed system can be effectively utilized to uncover PDF malware at high detection performance and low detection overhead.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated