Preprint
Review

This version is not peer-reviewed.

Deep Learning in State of Charge Estimation for Li-ion Battery: A Review

A peer-reviewed article of this preprint also exists.

Submitted:

25 August 2022

Posted:

26 August 2022

You are already at the latest version

Abstract
As one of the critical state parameters of the battery management system, lithium battery state of charge (SOC) can provide an essential reference for battery safety management, charge/discharge control, and energy management of electric vehicles. To analyze the application of deep learning in electric vehicle power battery SOC estimation, this study reviewed the technical process, common public datasets, and the neural networks used, structural characteristics, advantages and disadvantages of lithium battery SOC estimation in deep learning method. First, the specific technical processes of the deep learning method for SOC estimation were analyzed, including data collection, data preprocessing, feature engineering, model training, and model evaluation. Secondly, the current commonly and publicly used lithium battery dataset was summarized. Then, the input variables, data sets, errors, and advantages and disadvantages of four types of deep learning methods, were concluded using the structure of neural network used for training as the classification criterion. Finally, the challenges and future development directions of lithium battery SOC estimation in deep learning method were explained.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated