Preprint
Article

This version is not peer-reviewed.

Recognition of Vehicles Entering Expressway Service Areas and Estimation of Dwell Time Using ETC Data

A peer-reviewed article of this preprint also exists.

Submitted:

10 August 2022

Posted:

12 August 2022

You are already at the latest version

Abstract
To scientifically and effectively evaluate the service capacity of expressway service areas (ESAs) and improve the management level of ESAs, we propose a method for the recognition of vehicles entering ESAs (VeESAs) and estimation of vehicle dwell times using ETC data. First, the ETC data and their advantages are described in detail, and then the cleaning rules are designed according to the characteristics of the ETC data. Second, we established feature engineering according to the characteristics of VeESA, and proposed the XGBoost-based VeESA recognition (VR-XGBoost) model. Studied the driving rules in depth, we constructed a kinematics-based vehicle dwell time estimation (K-VDTE) model. The field validation in Part A/B of Yangli ESA using real ETC transaction data demonstrates that the effectiveness of our proposal outperforms the current state of the art. Specifically, in Part A and Part B, the recognition accuracies of VR-XGBoost are 95.9% and 97.4%, respectively, the mean absolute errors (MAEs) of dwell time are 52 s and 14 s, respectively, and the root mean square errors (RMSEs) are 69 s and 22 s, respectively. In addition, the confidence level of controlling the MAE of dwell time within 2 minutes is more than 97%. This work can effectively identify the VeESA, and accurately estimate the dwell time, which can provide a reference idea and theoretical basis for the service capacity evaluation and layout optimization of the ESA.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated