Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Weak Gravitational Lensing in Dark Matter and Plasma Mediums for Wormhole-like Static Aether Solution

Version 1 : Received: 23 July 2022 / Approved: 26 July 2022 / Online: 26 July 2022 (06:12:06 CEST)

How to cite: Javed, W.; Riaz, S.; Pantig, R.C.; Övgün, A. Weak Gravitational Lensing in Dark Matter and Plasma Mediums for Wormhole-like Static Aether Solution. Preprints 2022, 2022070390. https://doi.org/10.20944/preprints202207.0390.v1 Javed, W.; Riaz, S.; Pantig, R.C.; Övgün, A. Weak Gravitational Lensing in Dark Matter and Plasma Mediums for Wormhole-like Static Aether Solution. Preprints 2022, 2022070390. https://doi.org/10.20944/preprints202207.0390.v1

Abstract

In this paper, we study the deflection angle for wormhole-like static aether solution by using Gibbons and Werner technique in non-plasma, plasma and dark matter mediums. For this purpose, we use optical spacetime geometry to calculate the Gaussian optical curvature, then implement the Gauss-Bonnet theorem in weak field limits. Moreover, we compute the deflection angle by using a technique known as Keeton and Petters technique. Furthermore, we analyze the graphical behaviour of the bending angle ψ with respect to the impact parameter b, mass m as integration constant and parameter q in non-plasma and plasma mediums. We examine that deflection angle is exponentially increasing as direct with charge. Also, we observe that for small values of b, ψ increases and for large values of b the angle deceases. We also considered an analysis to the shadow cast of the wormhole relative to an observer at various locations. Comparing it the the Schwarzschild shadow, shadow cast is possible for wormhole as r<2m. At r>2m, the Schwarzschild is larger. As r → ∞, we have seen that the behavior of the shadow, as well as the weak deflection angle, approaches that of the Schwarzschild black hole. Overall, the effect of plasma tends to decrease the value of the observables due to the wormhole geometry.

Keywords

general relativity; gravitational lensing; wormhole-like static aether solution; Gauss-Bonnet theorem; plasma and non-plasma mediums; dark matter; modified gravity

Subject

Physical Sciences, Astronomy and Astrophysics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.