Preprint
Article

This version is not peer-reviewed.

Weak Lensing, Hawking Radiation and Greybody Factor Bound by a Charged Black Holes with Nonlinear Electrodynamics Corrections

Submitted:

17 August 2022

Posted:

19 August 2022

You are already at the latest version

Abstract
In this work, we study gravitational lensing in the weak field limits and the shadow by charged black holes in non-linear electrodynamics corrections. To find the deflection angle in vacuum (non-plasma) up to the leading order terms, we compute the optical Gaussian curvature from optical metric and utilize the Gauss-Bonnet theorem by applying Gibbons and Werner’s technique. Also, we derive the bending angle in plasma and dark matter mediums and observe that the bending angle increases by increasing the effects of these mediums. Further, in vacuum and plasma mediums, we investigate the graphical behavior of the bending angle with respect to the impact parameter u and notice that the bending angle exponentially decreases. Moreover, we calculate the Hawking temperature using the Gauss-Bonnet theorem and compare it with a standard method of computing the Hawking temperature. Furthermore, we investigate the bound of the greybody factor and graphically examine that bound converges to the 1. We relate our obtained results with the results of black holes given in the literature. Finally, we have considered exploring the effect of NLED, plasma, and dark matter on the black hole’s shadow radius to broaden the study’s scope. Results for the shadow indicate that the three parameters give different deviations to the shadow radius. Interestingly, while plasma affects both the photonsphere and shadow, dark matter only influences the shadow.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated