Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Gene Electrotransfer into Mammalian Cells Using Commercial Cell Culture Inserts with Porous Substrate

Version 1 : Received: 17 July 2022 / Approved: 19 July 2022 / Online: 19 July 2022 (02:28:54 CEST)

A peer-reviewed article of this Preprint also exists.

Vindiš, T.; Blažič, A.; Khayyat, D.; Potočnik, T.; Sachdev, S.; Rems, L. Gene Electrotransfer into Mammalian Cells Using Commercial Cell Culture Inserts with Porous Substrate. Pharmaceutics 2022, 14, 1959. Vindiš, T.; Blažič, A.; Khayyat, D.; Potočnik, T.; Sachdev, S.; Rems, L. Gene Electrotransfer into Mammalian Cells Using Commercial Cell Culture Inserts with Porous Substrate. Pharmaceutics 2022, 14, 1959.

Abstract

Gene electrotransfer is one of the main non-viral methods for intracellular delivery of plasmid DNA, wherein pulsed electric fields are used to transiently permeabilize the cell membrane allowing enhanced transmembrane transport. By localizing the electric field over small portions of the cell membrane using nanostructured substrates, it is possible to increase considerably the gene electrotransfer efficiency while preserving cell viability. In this study, we design an electrotransfer approach based on commercially available cell culture inserts with polyethylene-terephthalate (PET) porous substrate. We first use multiscale numerical modelling to determine the pulse parameters, substrate pore size, and other factors that are expected to result in successful gene electrotransfer. Based on numerical results we design a simple device combining an insert with substrates containing pores with 0.4 um and 1.0 um diameter, a multiwell plate, and a pair of wire electrodes. We test the device in three mammalian cell lines and obtain transfection efficiencies similar to those achieved with bulk electroporation, but with low-voltage pulses that do not require the use of expensive electroporators. Our combined theoretical and experimental analysis calls for further systematic studies that will investigate the influence of substrate pore size and porosity on gene electrotransfer efficiency and cell viability.

Keywords

localized electroporation; gene electrotransfer; plasmid; transfection; cell culture insert; numerical modeling; Chinese hamster ovary cells; myoblasts; C2C12 cell line; H9C2 cell line

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.