Preprint
Review

Potent Antibiotic Lemonomycin: A Glimpse of Its Discovery, Origin, and Chemical Synthesis

This version is not peer-reviewed.

Submitted:

11 June 2022

Posted:

14 June 2022

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Lemonomycin (1) was first isolated from the fermentation broth of Streptomyces candidus in 1964. The complete chemical structure was not elucidated until 2000 with extensive spectroscopic analysis. Lemonomycin is currently known as the only glycosylated tetrahydroisoquinoline antibiotic. Its potent antibacterial activity against Staphylococcus aureus and Bacillus subtilis and complex architecture make it an ideal target for total synthesis. In this short review, we summarize the research status of lemonomycin for biological activity, biosynthesis and chemical synthesis. The unique deoxy aminosugar-lemonose was proposed to play a crucial role in biological activity, as shown in other antibiotics, such as arimetamycin A, nocathiacin I, glycothiohexide α, and thiazamycins. Given the self-resistance of the original bacterial host, the integration of biosynthesis and chemical synthesis to pursue efficient synthesis and further derivatization is in high demand for the development of novel antibiotics to combat antibiotic-resistant infections.
Keywords: 
aminosugar; antibiotic; biosynthesis; glycosylation; lemonomycin; total synthesis
Subject: 
Chemistry and Materials Science  -   Organic Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

234

Views

239

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated