Preprint
Review

This version is not peer-reviewed.

Endocrine Disruptors in Food, Estrobolome and Breast Cancer

A peer-reviewed article of this preprint also exists.

Submitted:

09 March 2023

Posted:

10 March 2023

You are already at the latest version

Abstract
The microbiota is now recognized as one of the major players in human health and disease, in-cluding cancer. As regards breast cancer (BC), a clear link between microbiota and oncogenesis is still to be confirmed. Yet, part of the bacterial gene mass inside the gut, constituting the so called “estrobolome”, influences the sexual hormonal balance and, since the increased exposure to estrogens is associated with an increased risk, it may impact on the onset, progression, and treatment of hormonal dependent cancers, which account for more than 70% of all BCs. The hormonal dependent BCs are also affected by environmental and dietary endocrine disruptors and phytoestrogens which interact with microbiota in a bidirectional way: on one side disruptors can alter the composition and functions of the estrobolome, on the other the gut microbiota influences the metabolism of endocrine active food components. This review highlights the current evidence about the complex interplay between endocrine disruptors, phytoestrogens, microbiome, and BC, within the frames of a new “oncobiotic” perspective.
Keywords: 
;  ;  ;  ;  

1. Introduction

Breast cancer (BC) is currently one of the most prevalent cancers, with an estimated number of 2.3 million new cases worldwide [1] and represents the 5th cause of cancer-related deaths [2].
The BC incidence is expected to increase further, particularly in low- and medium-income countries, due to the westernization of lifestyles (e.g., delayed pregnancies, reduced breastfeeding, low age at menarche, lack of physical activity and poor diet), more accurate registration of cancer cases and improved cancer detection [3]. Current projections indicate that by 2030 the number of new cases diagnosed will reach 2.7 million annually [4].
The World Health Organization (WHO) distinguishes at least 18 different histological BC types among a wide spectrum of tumors featuring different morphologies, molecular characteristics, and clinical behaviors [5]. Independently from histological subtypes, invasive BC can be divided into molecular subtypes based on mRNA gene expression levels. In 2000, Perou et al. identified 4 molecular subtypes from microarray gene expression data: Luminal, HER2-enriched, Basal-like, and Normal Breast-like [6]; further studies allowed to divide the Luminal group into two subgroups (Luminal A and B) [7,8,9,10,11].
Luminal A tumors are characterized by the presence of estrogen-receptor (ER) and/or progesterone-receptor (PR) and absence of HER2. This subtype [12,13] is associated to a low expression of genes related to cell proliferation and shows a better prognosis, compared to Luminal B tumors, which are ER positive but may be PR negative and/or HER2 positive.
Overall, 80% and 65% of patients are diagnosed with BC positive for estrogen receptor (ER) and progesterone receptor (PR), respectively [9].
A new classification has recently been proposed for HER 2 tumors with a score of 1+ or 2+ without amplification by the ISH method (in situ hybridization); these are nicknamed HER 2 low breast cancer and account for more than half of all breast cancer cases.
On the basis of the latest studies it has been seen that this subcategory of tumors could benefit from new anti HER 2 drugs; however we are far from being able to define HER 2 low tumors as a separate clinical entity with its prognosis and specific features.[14]
Validation of techniques to identify HER2 heterogeneity in order to effectively treat tumors with non-uniform HER2 expression is needed. [15]
BC is a multifactorial disease, and several genetic and environmental aspects are recognized as risk factors for its onset and progression [16]. Among them, age, and modifiable factors such as obesity, type II diabetes, sedentary habits, alcohol, radiation, hormonal replacement therapy, and periodontal disease have direct implications on gut microbiota composition, so that recent studies have highlighted the association between microbial alterations and those risk factors for BC, through metabolic and immunitary pathways, hormonal balance, and cancer microenvironment [17,18,19].
As regards the sexual hormonal balance, estrogens, and endocrine active compounds play a role in shaping the gut microbiome, potentially impacting the clinical management of hormone-dependent cancers [20].

2. Endocrine disruptors, phytoestrogens and breast cancer

An Endocrine Disruptor (ED) is defined by the U.S. Environmental Protection Agency (EPA) as “an exogenous agent that interferes with synthesis, secretion, transport, metabolism, binding action, or elimination of natural blood-borne hormones that are present in the body and are responsible for homeostasis, reproduction, and developmental process” [21].
Both estrogens and EDs, binding to estrogen receptors, elicite downstream gene activation and trigger intracellular signaling cascades [22] in a variety of tissues, thus affecting reproductive health and hormonal dependent cancers risk [23,24,25].
Endocrine disruptors are a group of highly heterogeneous molecules, grossly divided into synthetic and natural compounds (phytoestrogens).

2.1. Synthetic Endocrine disruptors

The synthetic chemicals with endocrine activities have multiple uses, such as industrial solvents/lubricants (polychlorinated biphenyls (PCBs), polybrominated biphenyls (PBBs) and dioxins), plastics (bisphenol A (BPA)), plasticizers (phthalates), pesticides (methoxychlor, chlorpyrifos, dichlorodiphenyltrichloroethane (DDT)), fungicides (vinclozolin), pharmaceutical agents (diethylstilbestrol (DES)) and heavy metals such as cadmium [25,26].
The most common pathways of exposure to EDs are by inhalation, food intake, transplacental and skin contact [25,27,28]. By these means, EDs enter the food chain and accumulate in animal tissues up to humans mainly in adipose tissue, since most of EDs are highly lipophilic [29,30,31].
The mechanisms of action of EDs include a variety of possible pathways involved in endocrine and reproductive systems: via nuclear receptors, nonnuclear steroid hormone receptors (e.g., membrane estrogen receptors (ERs)), nonsteroid receptors (e.g., neurotransmitter receptors such as serotonin, dopamine, norepinephrine), orphan receptors [e.g., aryl hydrocarbon receptor (AhR)], enzymatic pathways involved in steroid biosynthesis and/or metabolism [25].
Another mechanism is the aromatase up-regulation (eg. phenolic EDs) and increased estradiol biosynthesis, that is linked to ER-positive breast cancer cell proliferation in vitro [32].
Furthermore, an epigenetic action, such as DNA methylation and/or acetylation and histone modifications, may be involved in mechanisms related to endocrine disruption [33,34,35].
The exposure to EDs has been related to multiple diseases, such as diabetes, metabolic syndrome, obesity, cardiovascular and neurological disorders [29,37]. Some EDs such as bisphenol A (BPA), dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs) are also associated with infertility and cancer [29,30,31,32,33,34,35,36,37,38,39,40].
According to the International Agency for Research on Cancer (IARC) classification, some of the EDs (BPA, DDT and PCBs) have key characteristics of human carcinogens, since they can alter cell proliferation, cell death or nutrient supply; are genotoxic; have immunosuppressive activity; induce epigenetic alterations, oxidative stress and chronic inflammation [39]. In addition, BPA by interacting with the estrogen receptor-α(ERα), induces cell proliferation and reduces apoptosis rate, affecting the prognosis of BC patients [40,41,42].
A growing number of studies have investigated the correlations between EDs and BC onset and progression [43]. Before the mammary gland development is completed, within the third trimester of the first pregnancy, breast tissue is particularly prone to carcinogenic effects and a prolonged exposure to low levels of EDs [44,45,46], can lead to an increased risk of carcinoma in upcoming years [47,48].
Some pesticides such as DDT, the dichloro-diphenyl-dichloroethylene (DDE), aldrin, and lindane have been associated with an increased risk of BC [49,50], either estrogen receptor-positive tumors (β-hexachlorocyclohexane and Pentachlorothioanisole) [51] or HER2-positive tumors (DDT) [52], in post-menopausal as well as in pre-menopausal women [53,54]. Among the heavy metals, cadmium was positively associated with BC [55,56].
Interestingly, women with an altered body composition and an excess of fat mass have shown a greater likelihood of BC after exposure to PCB [57], due to the lipophilic nature of these molecules.
Some EDs, such as BPS, are also involved in enhancing the progression and the metastatic spread of BC cells, by inducing tumor proliferation and epithelial-mesenchymal transition [58,59].

2.2. Phytoestrogens

Phytoestrogens are plant-derived polyphenolic non-steroidal compounds, exhibiting chemical structures and/or functions like those of 17β-estradiol (E2) [38,60,61], which enable them to bind to estrogen receptors [62,63]. For this reason, they are considered endocrine disruptors with potentially beneficial (a lowered risk of osteoporosis, heart disease and menopausal symptoms) and detrimental health effects.
In epidemiological studies, Asian populations who consume on average much more soy products than Western populations, have lower rates of hormone-dependent breast and endometrial cancers [64] and a lower incidence of menopausal symptoms and osteoporosis. Nevertheless, in Asian immigrants living in Western nations, whose diet includes more proteins and lipids and less fibers and soy, the risks for hormone-dependent cancers reach the same levels as the western population [65].
The main groups of phytoestrogens are lignans, coumestans, stilbenes and isoflavones.
Lignans, as components of plant cell walls, are found in many fiber-rich foods such as seeds (flax, pumpkin, sunflower, and sesame), whole grains (such as rye, oat, and barley), bran (such as wheat, oat, and rye), beans, fruits (especially berries), and cruciferous vegetables like broccoli and cabbage [66].
The richest dietary source of plant lignans is flaxseed (Linum usatissimum), and crushing or milling flaxseed can increase lignan bioavailability [67].
Compared to isoflavones and lignans, coumestans are less prevalent in the human diet. Coumestans are primarily found in legume shoots and sprouts, primarily in clover and alfalfa, though small amounts have also been found in spinach and brussel sprouts [68]. Coumestrol is also found in trace levels in a variety of legumes, including split peas, pinto beans, lima beans, and soybean sprouts. Additionally, it has been noted that after an insect and fungal attack, the coumestrol levels in legumes rise. [68].
The most prevalent and studied stilbene, resveratrol, may be found in a number of plants and acts as a phytoalexin to ward off fungus infections. The skin of grapes (Vitis vinifera), red wine, and other highly pigmented fruit juices are the most recognized sources of resveratrol. Resveratrol is also present in pistachios, notably the papery skin surrounding the nut, and peanuts (Arachis). While flavonoids and resveratrol both have vascular effects that are frequently addressed, only the trans isomers of resveratrol have been found to have some phytoestrogenic effects [69].
Isoflavones are present in berries, wine, grains, and nuts, but are most abundant in soybeans, soy products, and other legumes [60,61].
Studies have shown that phytoestrogens, mainly the isoflavones, have both agonistic and antagonistic effects on ERβ and ERα receptors, depending on their concentration and their affinity for different estrogen receptors [70]. This mechanism explains the dual effect of phytoestrogens in ER-positive breast cancer cells, resulting in a growth stimulation at low concentrations and inhibition at higher concentrations [71]. Coumestrol, genistein, and equol have a stronger affinity for ERβ [72,73].
Altogether, the phytoestrogens and their analogs inhibit cell cycle progression in various breast carcinomas either by decreasing mRNA or protein expression levels of cyclins (D1, E), and CDKs (1, 2, 4, 6) and by increasing their inhibitors (p21, p27, p57) and tumor suppressor genes (APC, ATM, PTEN, SERPINB5) [66]. Even isoflavones, lignan, and resveratrol analogs modulate the expressions of cell cycle regulators, affecting various types of BC cell lines in vitro [74]. They also inhibit the expression of oncogenic cyclin D1, increase a number of cyclin-dependent kinase inhibitors (p21, p27, and p57) and phytoestrogens and their analogs and derivatives may also affect BC behavior by inhibiting estrogen synthesis and metabolism, as well as exerting antiangiogenic, antimetastatic, and epigenetic effects. Furthermore, these bioactive compounds may reverse multi-drug resistance [74].
Despite a huge number of studies, the question of whether or not phytoestrogens are beneficial or harmful for patients diagnosed with BC remains unresolved: the answers are complex and may depend on age, health status and even the composition of gut microbiota [75] (Table 1).

3. Estrobolome

Gut microbiota is a regulator of circulating levels and bioavailability of estrogens, steroid hormones and cytokines [76,77], which are involved in the onset, progression and outcomes of the majority of BCs [78,79,80,81]. In addition to steroid hormones, BC is also influenced by hormones derived from the adipose tissue, such as leptin and insulin, which are also regulated by gut microbiota.
Two main pathways have been identified through which microbiome influences the sexual hormonal balance. In the deconjugation-independent pathway, some phytoestrogens contained in food, such as plant lignans, are metabolized by specific intestinal bacteria into bioactive compounds. In the deconjugation-dependent pathway, several genera like Collinsella, Edwardsiella, Alistipes, Bacteroides, Bifidobacterium, Citrobacter, Clostridium, Dermabacter, Escherichia, Faecalibacterium, Lactobacillus, Marvinbryantia, Propionibacterium, Roseburia, Tannerella , constituting the so called “estrobolome”, by the means of hydrolytic enzymes such as ß -glucuronidases and ß –glucosidases, can deconjugate estrogens excreted by the liver into the intestinal lumen as well as endocrine active food components, increasing their reabsorption through the entero-hepatic circulation [22,82,83,84]. Gut microbiota can also regulates the bioavailability of progesterone and testosterone: the sulfatase activity of certain enteric commensals can convert inactive circulating steroids into active hormones [84,85,86].
A pioneeristic study comparing premenopausal women consuming a “Western diet” (with high saturated fat intake), with vegetarians with a high fiber and moderate fat diet, showed estrogen levels three times higher in vegetarians’ feces and 15% to 20% lower in serum [87]. In another study, Asian immigrants, consuming a low-fat diet, had systemic estrogen levels 30% lower compared to American women eating a high-fat diet [88], possibly via the estrobolome, although additional factors including lifestyle and oral supplements may contribute [89]. Changes in the estrobolome composition induced by lifestyles, antibiotics and chemotherapeutics affect the systemic levels of estrogen and its metabolites, and the entero-hepatic circulation of estrogens [90] has been linked to cancer progression in hormonal dependent BC patients and survivors [85,91,92].
Several studies showed that cancerogenesis can also be promoted by enhanced local exposures of breast tissue to hormonal triggers, both from estrogen and progesterone metabolites: an abundance of β -glucuronidase signaling has been found in nipple aspirate fluid of BC survivors [93], while BC tissue shows higher concentrations of estrogen metabolites compared to normal breast tissue [88,94]. In addition, BC tissue has elevated 5a-reductase activity, which results in significantly higher total levels of 5a-pregnanes (5aP) compared to normal tissue [95,96]. Among the possible mechanisms leading to an increased production of progesterone metabolites in tumour microenvironment, Bacillus cereus seem to play a role in promoting cancer cells proliferation [95,97,98]. Among the gram-negative family of Sphingomonadaceae, Sphyngomonas yanoikuyae, relatively enriched in paired normal breast tissue as compared to cancer tissue [99], has shown the ability to digest monocyclic compounds and degrade estrogens within the breast tissue [100], which could interfere with cancerogenesis through the local estrogen bioavailability.

4. Interplay between human microbiota, endocrine disruptors, and phytoestrogens

The complex relashionship between microbiota and endocrine active compounds derived from diet act in a bidirectional way: enteric commensals can metabolize EDs into biologically active or inactive forms, while EDs may selectively induce the growth of specific bacterial populations.
An interesting example of the microbiota’s impact on xenobiotic metabolism is the biotrasformation of lignans, such as anhydrosecoisolariciresinol, by the gram-positive bacterium Clostridium methoxybenzovorans [101,102] , or the secoisolariciresinol diglucoside by B. pseudocatenulatum WC 401 and other Bifidobacterium strains through deglucosylation [103] . Among prenylflavonoids, a subgroup of chalcones and flavanones, the most significant are xanthohumol (XN) and desmethyxanthohumol (DMX) derived from hops, which are widely used in beer industry [104] : XN’s metabolite 8-prenylnaringenin (8-PN), produced in the gut by the commensal, [105] is one of the most potent phytoestrogen [106] , with a remarkable affinity for the ERα receptor [107,108] .
These dietary-induced interactions between gut microbiota and hormonal balance may lead to a dysbiosis, thus affecting human health and diseases [109].

5. Role of the endocrine disruptors on microbiota composition

Several studies underline the association between EDs exposure and metabolic disorders, diabetes, obesity, and some neurobehavioral disorders [110], which have been related to gut dysbiosis, suggesting a role of gut microbiome and its products (post-biotics) as mediators of the effects induced by EDs in human metabolism [111].
Both the exposure to EDs and their bioactive metabolites may disrupt the microbiota composition and lead to dysbiosis [112], but also alter the microbiome functions and metabolic activities [113]. Data from animal models suggest that the alterations in gut microbiota not only affect the levels of microbial enzymes, but also the levels of hepatic enzymes in the host [114].
Several EDs have been shown to promote dysbiosis or to inhibit bacterial growth both in vitro and in vivo [111], exerting a deep impact on the gut colonization, which will ultimately affect host health. In addition, a “leaky gut” wall let the circulating EDs enter directly the intestinal milieu and, by interacting with the enteric nervous system, may affect the composition and functions of gut microbiome [115,116,117].
Clavel et al. showed that the isoflavone daidzein and its metabolites modulate the composition of gut microbiota in postmenopausal women after 2 months supplementation, finding an association between the equol production and the increase of the F. prausnitzii and Lactobacillus-Enterococcus groups [118]. In a long-term study exploring the effects of isoflavones supplementation on the faecal microbiota of healthy menopausal women, a significant change of microbial populations was recorded, but without any difference between equol-producers and non-producers [119].
In another study on healthy volunteers, ellagitannin and its metabolites modulated the composition of gut microbiota (Actinobacter, Firmicutes and Verrucomicrobia), after 4 weeks of supplementation of a pomegranate extract [120].
Luo et al. investigated the in vivo anti-obesity effect of flaxseed gums (FG) in obese rats and found the FG diet decreased the relative abundance of Clostridiales and increased the Clostridium, Sutterella, Veillonella, Burkholderiales and Enterobacteriaceae family in their gut microbiota [121]. The supplementation with syringaresinol, a plant lignan, increases the Firmicutes/Bacteroidetes ratio in an aging mouse model [122].
The resveratrol mechanisms of action are largely attributed to the modulation of gut microbiota and its metabolites. An in vitro study demonstrated a different conversion of trans-resveratrol into dihydroresveratrol, 3,4′–dihydroxybibenzyl, also known as lunularin, and 3,4′-dihydroxy-trans-stilbene, depending on the bacterial diversity of each individual’s faecal samples [123]. Chen et al. (2016) observed that modulation of gut microbiota induced by resveratrol reduced the levels of trimethylamine-N-oxide (TMAO) by inhibiting microbial trimethylamine (TMA) production and increased hepatic bile acid (BA) de novo synthesis [124]. An increase in Bacteroides/Firmicutes ratio was also observed in vivo after resveratrol supplementation in animal studies along with other effects, such as anti-diabetic effect [125], improved carbohydrate metabolism [126] and glucose homeostasis [127]. Giuliani et al., using an advanced gastrointestinal stimulator, showed that an extract containing a combination of t-resveratrol and ε-viniferin induced changes in microbial functions and composition together with a strong decrease in the levels of SCFA and NH4+ [128].

6. Different metabolic pathways of endocrine disruptors depending on gut microbiota

Gut microbiota plays a key role in the metabolism of EDs and phytoestrogens into bioactive metabolites [129]. Isoflavones, ellagitannins, and lignans are metabolized by intestinal bacteria into equol, urolithins and enterolignans, respectively [102].
A model for the deconjugation-independent pathway is the enzimatic degradation of plant lignans, such as secoisolariciresinol, into phytoestrogens enterodiol and enterolactone by different intestinal bacteria, like Eggerthella lenta and Peptostreptococcus productus [118]. Enterodiol and enterolactone may act as selective modulators of estrogens with protective effects against BC [19,130] and favorable prognostic impact in postmenopausal BC patients [131].
Van de Wiele et al. [132] reported that colonic microbiota can metabolize polyaromatic hydrocarbons into 1-hydroxy pyrene and 7 -hydroxybenzo[a]pyrene, biologically active estrogen metabolites.
A recent review of Velmurugan et al. [112] focused on the role of gut microbiota in glucose dysregulation, glucose intolerance and insulin resistance induced by several classes of EDs from plastics, pesticides, synthetic fertilizers, electronic waste and food additives. They included bisphenols, dioxins, phthalates, organochlorines, organophosphates, fungicides, polychlorinated biphenyls and polychlorinated dibenzofurans and other waste pollutants.
On the other hand, hyperglycemia induces changes of microbiota composition, favoring the growth of non-commensal germs, at the expense of beneficial phyla such as Bacilli (e.g. Lactobacillus), Bacteroidetes, Proteobacteria and Actinobacteria [112]. Lactobacilli can diminish the toxicity of pesticides and protect against EDs induced oxidative stress by inhibiting intestinal absorption of contaminants, reinforcing the tight junctions in the intestinal barrier, and stimulating host’s immunity [133]. The exposure to EDs, such as polychlorinated biphenyls, may affect the integrity of gut permeability decreasing the expression of tight junctions’ proteins [134,135].
Gut dysbiosis is linked with many disorders such as obesity, diabetes, endocrine and immunological diseases [109,136,137,138,139,140,141], which have been proven as risk factors for BC in both pre- and post-menopausal women [142,143].
In addition, all main classes of EDs (bisphenols, phthalates, polychlorinated biphenyls, organochlorine pesticides, dioxins and parabens) may act as obesogenic and increase the risk of developing insuline resistance and diabetes [144], by increasing adipogenesis through the mechanisms of hormone regulation of food intake, appetite and disruption of pancreatic β-cell function [145,146,147,148,149,150]. Even the fungicide tributyltin, which at least in mice decreased gut microbial biodiversity in the microbiome composition [151], induces adipogenesis by interacting with nuclear PPARγ and its heteromeric partner retinoid X receptor.
The interplay between EDs and human microbiota affects BC risk and clinical management not only through the sexual hormonal balance, but also through the innate as well as the acquired immunity [133,152,153,154,155], but these fundamental pathways are beyond the topic of the present review.
Beside this, a plethora of studies show that the gut microbiome affects the side effects, the toxicity and the outomes of anticancer treatments such as radiation therapy, chemotherapy, immunotherapy and hormone therapy. Pharmacomicrobiomics is defined as the effect of microbiome variations on drug absorption, distribution, metabolism, excretion, toxicity and overall response [95,156,157,158].
On the other hand, anticancer agents such as letrozole, an aromatase inhibitor, are associated with a time-dependent reduction of phylogenetic richness in the gut microbiota and a significant decrease in overall species [95].
These pharmacomicrobiomic studies might lead to the gut microbiota analysis as a means to predict patients’ response to treatments, allowing a more personalized approach based on the microbiota-host-cancer triad.

8. Conclusions

Endocrine disruptors and phytoestrogens interact with the human microbiota both at the intestinal and the breast tissue levels, affecting estrogens’ balance, bioavailability, and functions. This complex interplay results in a modification of BC cells behaviours, at least for hormonal dependent tumors, which account for more than 70% of cases globally.
A better understanding of this interplay, as well as the chance of modulating the exposure to EDs and targeting the microbiome composition, via dietary interventions and probiotics, could pave the way to a new oncobiotic approach in order to improve the clinical management of BC patients.

Author Contributions

All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021, 71 (3), 209–249. [CrossRef]
  2. Sharma, R. Breast Cancer Incidence, Mortality and Mortality-to-Incidence Ratio (MIR) Are Associated with Human Development, 1990–2016: Evidence from Global Burden of Disease Study 2016. Breast Cancer 2019, 26 (4), 428–445. [CrossRef]
  3. Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers (Basel) 2021, 13 (17), 4287. [CrossRef]
  4. Bray, F.; Jemal, A.; Grey, N.; Ferlay, J.; Forman, D. Global Cancer Transitions According to the Human Development Index (2008-2030): A Population-Based Study. Lancet Oncol 2012, 13 (8), 790–801. [CrossRef]
  5. Eble, John N., Fattaneh A. Tavassoli, and Peter Devilee, eds. Pathology and genetics of tumours of the breast and female genital organs. Iarc, 2003.
  6. Perou, C. M.; Sørlie, T.; Eisen, M. B.; van de Rijn, M.; Jeffrey, S. S.; Rees, C. A.; Pollack, J. R.; Ross, D. T.; Johnsen, H.; Akslen, L. A.; Fluge, O.; Pergamenschikov, A.; Williams, C.; Zhu, S. X.; Lønning, P. E.; Børresen-Dale, A. L.; Brown, P. O.; Botstein, D. Molecular Portraits of Human Breast Tumours. Nature 2000, 406 (6797), 747–752. [CrossRef]
  7. Sørlie, T.; Perou, C. M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M. B.; van de Rijn, M.; Jeffrey, S. S.; Thorsen, T.; Quist, H.; Matese, J. C.; Brown, P. O.; Botstein, D.; Lønning, P. E.; Børresen-Dale, A. L. Gene Expression Patterns of Breast Carcinomas Distinguish Tumor Subclasses with Clinical Implications. Proc Natl Acad Sci U S A 2001, 98 (19), 10869–10874. [CrossRef]
  8. Prat, A.; Perou, C. M. Deconstructing the Molecular Portraits of Breast Cancer. Mol Oncol 2011, 5 (1), 5–23. [CrossRef]
  9. Howlader, N.; Altekruse, S. F.; Li, C. I.; Chen, V. W.; Clarke, C. A.; Ries, L. A. G.; Cronin, K. A. US Incidence of Breast Cancer Subtypes Defined by Joint Hormone Receptor and HER2 Status. J Natl Cancer Inst 2014, 106 (5), dju055. [CrossRef]
  10. Weigelt, B.; Geyer, F. C.; Reis-Filho, J. S. Histological Types of Breast Cancer: How Special Are They? Mol Oncol 2010, 4 (3), 192–208. [CrossRef]
  11. Makki, J. Diversity of Breast Carcinoma: Histological Subtypes and Clinical Relevance. Clin Med Insights Pathol 2015, 8, 23–31. [CrossRef]
  12. Weigelt, B.; Baehner, F. L.; Reis-Filho, J. S. The Contribution of Gene Expression Profiling to Breast Cancer Classification, Prognostication and Prediction: A Retrospective of the Last Decade. J Pathol 2010, 220 (2), 263–280. [CrossRef]
  13. Prat, A.; Cheang, M. C. U.; Martín, M.; Parker, J. S.; Carrasco, E.; Caballero, R.; Tyldesley, S.; Gelmon, K.; Bernard, P. S.; Nielsen, T. O.; Perou, C. M. Prognostic Significance of Progesterone Receptor-Positive Tumor Cells within Immunohistochemically Defined Luminal A Breast Cancer. J Clin Oncol 2013, 31 (2), 203–209. [CrossRef]
  14. Tarantino P, Hamilton E, Tolaney SM, Cortes J, Morganti S, Ferraro E, Marra A, Viale G, Trapani D, Cardoso F, Penault-Llorca F, Viale G, Andrè F, Curigliano G. HER2-Low Breast Cancer: Pathological and Clinical Landscape. J Clin Oncol. 2020 Jun 10;38(17):1951-1962. Epub 2020 Apr 24. [CrossRef] [PubMed]
  15. Hamilton E, Shastry M, Shiller SM, Ren R. Targeting HER2 heterogeneity in breast cancer. Cancer Treat Rev. 2021 Nov;100:102286. Epub 2021 Sep 2. [CrossRef] [PubMed]
  16. Loibl, S.; Poortmans, P.; Morrow, M.; Denkert, C.; Curigliano, G. Breast Cancer. Lancet 2021, 397 (10286), 1750–1769. [CrossRef]
  17. Kovács, T.; Mikó, E.; Ujlaki, G.; Sári, Z.; Bai, P. The Microbiome as a Component of the Tumor Microenvironment. Adv Exp Med Biol 2020, 1225, 137–153. [CrossRef]
  18. Costantini, L.; Magno, S.; Albanese, D.; Donati, C.; Molinari, R.; Filippone, A.; Masetti, R.; Merendino, N. Characterization of Human Breast Tissue Microbiota from Core Needle Biopsies through the Analysis of Multi Hypervariable 16S-RRNA Gene Regions. Sci Rep 2018, 8 (1), 16893. [CrossRef]
  19. Eslami-S, Z.; Majidzadeh-A, K.; Halvaei, S.; Babapirali, F.; Esmaeili, R. Microbiome and Breast Cancer: New Role for an Ancient Population. Front Oncol 2020, 10, 120. [CrossRef]
  20. Kwa, M.; Plottel, C. S.; Blaser, M. J.; Adams, S. The Intestinal Microbiome and Estrogen Receptor-Positive Female Breast Cancer. J Natl Cancer Inst 2016, 108 (8). [CrossRef]
  21. Kavlock, R. J.; Daston, G. P.; DeRosa, C.; Fenner-Crisp, P.; Gray, L. E.; Kaattari, S.; Lucier, G.; Luster, M.; Mac, M. J.; Maczka, C.; Miller, R.; Moore, J.; Rolland, R.; Scott, G.; Sheehan, D. M.; Sinks, T.; Tilson, H. A. Research Needs for the Risk Assessment of Health and Environmental Effects of Endocrine Disruptors: A Report of the U.S. EPA-Sponsored Workshop. Environ Health Perspect 1996, 104 Suppl 4, 715–740. [CrossRef]
  22. Rietjens, I. M. C. M.; Louisse, J.; Beekmann, K. The Potential Health Effects of Dietary Phytoestrogens. Br J Pharmacol 2017, 174 (11), 1263–1280. [CrossRef]
  23. Muhleisen, A. L.; Herbst-Kralovetz, M. M. Menopause and the Vaginal Microbiome. Maturitas 2016, 91, 42–50. [CrossRef]
  24. Toran-Allerand, C. D.; Miranda, R. C.; Bentham, W. D.; Sohrabji, F.; Brown, T. J.; Hochberg, R. B.; MacLusky, N. J. Estrogen Receptors Colocalize with Low-Affinity Nerve Growth Factor Receptors in Cholinergic Neurons of the Basal Forebrain. Proc Natl Acad Sci U S A 1992, 89 (10), 4668–4672. [CrossRef]
  25. Kabir, E. R.; Rahman, M. S.; Rahman, I. A Review on Endocrine Disruptors and Their Possible Impacts on Human Health. Environ Toxicol Pharmacol 2015, 40 (1), 241–258. [CrossRef]
  26. Monneret, C. What Is an Endocrine Disruptor? C R Biol 2017, 340 (9–10), 403–405. [CrossRef]
  27. Gore, A. C.; Chappell, V. A.; Fenton, S. E.; Flaws, J. A.; Nadal, A.; Prins, G. S.; Toppari, J.; Zoeller, R. T. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015, 36 (6), E1–E150. [CrossRef]
  28. Cohn, B. A.; La Merrill, M. A.; Krigbaum, N. Y.; Wang, M.; Park, J.-S.; Petreas, M.; Yeh, G.; Hovey, R. C.; Zimmermann, L.; Cirillo, P. M. In Utero Exposure to Poly- and Perfluoroalkyl Substances (PFASs) and Subsequent Breast Cancer. Reprod Toxicol 2020, 92, 112–119. [CrossRef]
  29. Heindel, J. J.; Newbold, R.; Schug, T. T. Endocrine Disruptors and Obesity. Nat Rev Endocrinol 2015, 11 (11), 653–661. [CrossRef]
  30. Sargis, R. M. Metabolic Disruption in Context: Clinical Avenues for Synergistic Perturbations in Energy Homeostasis by Endocrine Disrupting Chemicals. Endocr Disruptors (Austin) 2015, 3 (1), e1080788. [CrossRef]
  31. Barouki, R. Endocrine Disruptors: Revisiting Concepts and Dogma in Toxicology. C R Biol 2017, 340 (9–10), 410–413. [CrossRef]
  32. Williams, G. P.; Darbre, P. D. Low-Dose Environmental Endocrine Disruptors, Increase Aromatase Activity, Estradiol Biosynthesis and Cell Proliferation in Human Breast Cells. Mol Cell Endocrinol 2019, 486, 55–64. [CrossRef]
  33. Zama, A. M.; Uzumcu, M. Epigenetic Effects of Endocrine-Disrupting Chemicals on Female Reproduction: An Ovarian Perspective. Front Neuroendocrinol 2010, 31 (4), 420–439. [CrossRef]
  34. Giulivo, M.; Lopez de Alda, M.; Capri, E.; Barceló, D. Human Exposure to Endocrine Disrupting Compounds: Their Role in Reproductive Systems, Metabolic Syndrome and Breast Cancer. A Review. Environ Res 2016, 151, 251–264. [CrossRef]
  35. Burks, H.; Pashos, N.; Martin, E.; Mclachlan, J.; Bunnell, B.; Burow, M. Endocrine Disruptors and the Tumor Microenvironment: A New Paradigm in Breast Cancer Biology. Mol Cell Endocrinol 2017, 457, 13–19. [CrossRef]
  36. Quagliariello, V.; Rossetti, S.; Cavaliere, C.; Di Palo, R.; Lamantia, E.; Castaldo, L.; Nocerino, F.; Ametrano, G.; Cappuccio, F.; Malzone, G.; Montanari, M.; Vanacore, D.; Romano, F. J.; Piscitelli, R.; Iovane, G.; Pepe, M. F.; Berretta, M.; D’Aniello, C.; Perdonà, S.; Muto, P.; Botti, G.; Ciliberto, G.; Veneziani, B. M.; De Falco, F.; Maiolino, P.; Caraglia, M.; Montella, M.; Iaffaioli, R. V.; Facchini, G. Metabolic Syndrome, Endocrine Disruptors and Prostate Cancer Associations: Biochemical and Pathophysiological Evidences. Oncotarget 2017, 8 (18), 30606–30616. [CrossRef]
  37. Rodgers, K. M.; Udesky, J. O.; Rudel, R. A.; Brody, J. G. Environmental Chemicals and Breast Cancer: An Updated Review of Epidemiological Literature Informed by Biological Mechanisms. Environ Res 2018, 160, 152–182. [CrossRef]
  38. Diamanti-Kandarakis, E.; Bourguignon, J.-P.; Giudice, L. C.; Hauser, R.; Prins, G. S.; Soto, A. M.; Zoeller, R. T.; Gore, A. C. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr Rev 2009, 30 (4), 293–342. [CrossRef]
  39. Calaf, G. M.; Ponce-Cusi, R.; Aguayo, F.; Muñoz, J. P.; Bleak, T. C. Endocrine Disruptors from the Environment Affecting Breast Cancer. Oncol Lett 2020, 20 (1), 19–32. [CrossRef]
  40. Sengupta, S.; Obiorah, I.; Maximov, P. Y.; Curpan, R.; Jordan, V. C. Molecular Mechanism of Action of Bisphenol and Bisphenol A Mediated by Oestrogen Receptor Alpha in Growth and Apoptosis of Breast Cancer Cells. Br J Pharmacol 2013, 169 (1), 167–178. [CrossRef]
  41. Mlynarcikova, A.; Macho, L.; Fickova, M. Bisphenol A Alone or in Combination with Estradiol Modulates Cell Cycle- and Apoptosis-Related Proteins and Genes in MCF7 Cells. Endocr Regul 2013, 47 (4), 189–199. [CrossRef]
  42. Katchy, A.; Pinto, C.; Jonsson, P.; Nguyen-Vu, T.; Pandelova, M.; Riu, A.; Schramm, K.-W.; Samarov, D.; Gustafsson, J.-Å.; Bondesson, M.; Williams, C. Coexposure to Phytoestrogens and Bisphenol a Mimics Estrogenic Effects in an Additive Manner. Toxicol Sci 2014, 138 (1), 21–35. [CrossRef]
  43. Rocha, P. R. S.; Oliveira, V. D.; Vasques, C. I.; Dos Reis, P. E. D.; Amato, A. A. Exposure to Endocrine Disruptors and Risk of Breast Cancer: A Systematic Review. Crit Rev Oncol Hematol 2021, 161, 103330. [CrossRef]
  44. Javed, A.; Lteif, A. Development of the Human Breast. Semin Plast Surg 2013, 27 (1), 5–12. [CrossRef]
  45. Gulledge, C. C.; Burow, M. E.; McLachlan, J. A. Endocrine Disruption in Sexual Differentiation and Puberty. What Do Pseudohermaphroditic Polar Bears Have to Do with the Practice of Pediatrics? Pediatr Clin North Am 2001, 48 (5), 1223–1240, x. [CrossRef]
  46. Paulose, T.; Speroni, L.; Sonnenschein, C.; Soto, A. M. Estrogens in the Wrong Place at the Wrong Time: Fetal BPA Exposure and Mammary Cancer. Reprod Toxicol 2015, 54, 58–65. [CrossRef]
  47. Palmer, J. R.; Wise, L. A.; Hatch, E. E.; Troisi, R.; Titus-Ernstoff, L.; Strohsnitter, W.; Kaufman, R.; Herbst, A. L.; Noller, K. L.; Hyer, M.; Hoover, R. N. Prenatal Diethylstilbestrol Exposure and Risk of Breast Cancer. Cancer Epidemiol Biomarkers Prev 2006, 15 (8), 1509–1514. [CrossRef]
  48. Thompson, W. D.; Janerich, D. T. Maternal Age at Birth and Risk of Breast Cancer in Daughters. Epidemiology 1990, 1 (2), 101–106. [CrossRef]
  49. Arrebola, J. P.; Belhassen, H.; Artacho-Cordón, F.; Ghali, R.; Ghorbel, H.; Boussen, H.; Perez-Carrascosa, F. M.; Expósito, J.; Hedhili, A.; Olea, N. Risk of Female Breast Cancer and Serum Concentrations of Organochlorine Pesticides and Polychlorinated Biphenyls: A Case-Control Study in Tunisia. Sci Total Environ 2015, 520, 106–113. [CrossRef]
  50. Boada, L. D.; Zumbado, M.; Henríquez-Hernández, L. A.; Almeida-González, M.; Alvarez-León, E. E.; Serra-Majem, L.; Luzardo, O. P. Complex Organochlorine Pesticide Mixtures as Determinant Factor for Breast Cancer Risk: A Population-Based Case-Control Study in the Canary Islands (Spain). Environ Health 2012, 11, 28. [CrossRef]
  51. Yang, J.-Z.; Wang, Z.-X.; Ma, L.-H.; Shen, X.-B.; Sun, Y.; Hu, D.-W.; Sun, L.-X. The Organochlorine Pesticides Residues in the Invasive Ductal Breast Cancer Patients. Environ Toxicol Pharmacol 2015, 40 (3), 698–703. [CrossRef]
  52. Cohn, B. A.; La Merrill, M.; Krigbaum, N. Y.; Yeh, G.; Park, J.-S.; Zimmermann, L.; Cirillo, P. M. DDT Exposure in Utero and Breast Cancer. J Clin Endocrinol Metab 2015, 100 (8), 2865–2872. [CrossRef]
  53. Aronson, K. J.; Miller, A. B.; Woolcott, C. G.; Sterns, E. E.; McCready, D. R.; Lickley, L. A.; Fish, E. B.; Hiraki, G. Y.; Holloway, C.; Ross, T.; Hanna, W. M.; SenGupta, S. K.; Weber, J. P. Breast Adipose Tissue Concentrations of Polychlorinated Biphenyls and Other Organochlorines and Breast Cancer Risk. Cancer Epidemiol Biomarkers Prev 2000, 9 (1), 55–63.
  54. Recio-Vega, R.; Velazco-Rodriguez, V.; Ocampo-Gómez, G.; Hernandez-Gonzalez, S.; Ruiz-Flores, P.; Lopez-Marquez, F. Serum Levels of Polychlorinated Biphenyls in Mexican Women and Breast Cancer Risk. J Appl Toxicol 2011, 31 (3), 270–278. [CrossRef]
  55. Eriksen, K. T.; McElroy, J. A.; Harrington, J. M.; Levine, K. E.; Pedersen, C.; Sørensen, M.; Tjønneland, A.; Meliker, J. R.; Raaschou-Nielsen, O. Urinary Cadmium and Breast Cancer: A Prospective Danish Cohort Study. J Natl Cancer Inst 2017, 109 (2), djw204. [CrossRef]
  56. Nagata, C.; Nagao, Y.; Nakamura, K.; Wada, K.; Tamai, Y.; Tsuji, M.; Yamamoto, S.; Kashiki, Y. Cadmium Exposure and the Risk of Breast Cancer in Japanese Women. Breast Cancer Res Treat 2013, 138 (1), 235–239. [CrossRef]
  57. Stellman, S. D.; Djordjevic, M. V.; Britton, J. A.; Muscat, J. E.; Citron, M. L.; Kemeny, M.; Busch, E.; Gong, L. Breast Cancer Risk in Relation to Adipose Concentrations of Organochlorine Pesticides and Polychlorinated Biphenyls in Long Island, New York. Cancer Epidemiol Biomarkers Prev 2000, 9 (11), 1241–1249.
  58. Zhang, X.-L.; Liu, N.; Weng, S.-F.; Wang, H.-S. Bisphenol A Increases the Migration and Invasion of Triple-Negative Breast Cancer Cells via Oestrogen-Related Receptor Gamma. Basic Clin Pharmacol Toxicol 2016, 119 (4), 389–395. [CrossRef]
  59. Jenkins, S.; Wang, J.; Eltoum, I.; Desmond, R.; Lamartiniere, C. A. Chronic Oral Exposure to Bisphenol A Results in a Nonmonotonic Dose Response in Mammary Carcinogenesis and Metastasis in MMTV-ErbB2 Mice. Environ Health Perspect 2011, 119 (11), 1604–1609. [CrossRef]
  60. Dixon, R. A. Phytoestrogens. Annu Rev Plant Biol 2004, 55, 225–261. [CrossRef]
  61. Michel, T.; Halabalaki, M.; Skaltsounis, A.-L. New Concepts, Experimental Approaches, and Dereplication Strategies for the Discovery of Novel Phytoestrogens from Natural Sources. Planta Med 2013, 79 (7), 514–532. [CrossRef]
  62. Lissin, L. W.; Cooke, J. P. Phytoestrogens and Cardiovascular Health. J Am Coll Cardiol 2000, 35 (6), 1403–1410. [CrossRef]
  63. Turner, J. V.; Agatonovic-Kustrin, S.; Glass, B. D. Molecular Aspects of Phytoestrogen Selective Binding at Estrogen Receptors. Journal of Pharmaceutical Sciences 2007, 96 (8), 1879–1885. [CrossRef]
  64. Zhang, G. Q., Chen, J. L., Liu, Q., Zhang, Y., Zeng, H., & Zhao, Y. (2015). Soy intake is associated with lower endometrial cancer risk: a systematic review and meta-analysis of observational studies. Medicine, 94(50). [CrossRef]
  65. Messina, M. (2016). Soy and health update: evaluation of the clinical and epidemiologic literature. Nutrients, 8(12), 754. [CrossRef]
  66. Meagher, L.P.; Bentz, E.K. Assessment of data on the lignan content of foods. J Food Compos Anal, 2000, 13(6), 935-947. [CrossRef]
  67. Kuijsten, A.; Arts, I.C.; van’t, V.P.; Hollman, P.C. The relative bioavailability of enterolignans in humans is enhanced by milling and crushing of flaxseed. J Nutr., 2005, 135(12), 2812-2816. [CrossRef]
  68. Poluzzi, E., Piccinni, C., Raschi, E., Rampa, A., Recanatini, M., and De Ponti, F. (2014). Phytoestrogens in postmenopause: the state of the art from a chemical, pharmacological and regulatory perspective. Curr. Med. Chem. 21, 417–436. [CrossRef]
  69. Bagchi, D.; Das, D.K.; Tosaki, A.; Bagchi, M.; Kothari, S.C. Benefits of resveratrol in women’s health. Drugs Exp. Clin. Res., 2001,27(5-6), 233-248.
  70. Fitzpatrick, L. A. Phytoestrogens--Mechanism of Action and Effect on Bone Markers and Bone Mineral Density. Endocrinol Metab Clin North Am 2003, 32 (1), 233–252, viii. [CrossRef]
  71. Lecomte, S.; Demay, F.; Ferrière, F.; Pakdel, F. Phytochemicals Targeting Estrogen Receptors: Beneficial Rather Than Adverse Effects? Int J Mol Sci 2017, 18 (7), E1381. [CrossRef]
  72. Soto, A. M.; Sonnenschein, C.; Chung, K. L.; Fernandez, M. F.; Olea, N.; Serrano, F. O. The E-SCREEN Assay as a Tool to Identify Estrogens: An Update on Estrogenic Environmental Pollutants. Environmental Health Perspectives 1995, 103 (suppl 7), 113–122. [CrossRef]
  73. Mueller, S. O.; Simon, S.; Chae, K.; Metzler, M.; Korach, K. S. Phytoestrogens and Their Human Metabolites Show Distinct Agonistic and Antagonistic Properties on Estrogen Receptor Alpha (ERalpha) and ERbeta in Human Cells. Toxicol Sci 2004, 80 (1), 14–25. [CrossRef]
  74. Basu, P.; Maier, C. Phytoestrogens and Breast Cancer: In Vitro Anticancer Activities of Isoflavones, Lignans, Coumestans, Stilbenes and Their Analogs and Derivatives. Biomed Pharmacother 2018, 107, 1648–1666. [CrossRef]
  75. Stojanov, S.; Kreft, S. Gut Microbiota and the Metabolism of Phytoestrogens. Rev. Bras. Farmacogn. 2020, 30 (2), 145–154. [CrossRef]
  76. Baker, J. M.; Al-Nakkash, L.; Herbst-Kralovetz, M. M. Estrogen-Gut Microbiome Axis: Physiological and Clinical Implications. Maturitas 2017, 103, 45–53. [CrossRef]
  77. Baker, J. M.; Al-Nakkash, L.; Herbst-Kralovetz, M. M. Estrogen-Gut Microbiome Axis: Physiological and Clinical Implications. Maturitas 2017, 103, 45–53. [CrossRef]
  78. Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project. Nature 2019, 569 (7758), 641–648. [CrossRef]
  79. Cavuoto, P.; Fenech, M. F. A Review of Methionine Dependency and the Role of Methionine Restriction in Cancer Growth Control and Life-Span Extension. Cancer Treat Rev 2012, 38 (6), 726–736. [CrossRef]
  80. Hoffman, R. M. Development of Recombinant Methioninase to Target the General Cancer-Specific Metabolic Defect of Methionine Dependence: A 40-Year Odyssey. Expert Opin Biol Ther 2015, 15 (1), 21–31. [CrossRef]
  81. Filippone, A.; Magno, S.; Clinical Connections Between the Microbiota and Breast Cancer (Onset, Progression and Management). Comprehensive Gut Microbiota, vol. 1. Elsevier, pp. 35–45, 2022 In: Glibetic, M. (Ed.). [CrossRef]
  82. Arrieta, M.-C.; Stiemsma, L. T.; Amenyogbe, N.; Brown, E. M.; Finlay, B. The Intestinal Microbiome in Early Life: Health and Disease. Front Immunol 2014, 5, 427. [CrossRef]
  83. Selber-Hnatiw, S.; Sultana, T.; Tse, W.; Abdollahi, N.; Abdullah, S.; Al Rahbani, J.; Alazar, D.; Alrumhein, N. J.; Aprikian, S.; Arshad, R.; Azuelos, J.-D.; Bernadotte, D.; Beswick, N.; Chazbey, H.; Church, K.; Ciubotaru, E.; D’Amato, L.; Del Corpo, T.; Deng, J.; Di Giulio, B. L.; Diveeva, D.; Elahie, E.; Frank, J. G. M.; Furze, E.; Garner, R.; Gibbs, V.; Goldberg-Hall, R.; Goldman, C. J.; Goltsios, F.-F.; Gorjipour, K.; Grant, T.; Greco, B.; Guliyev, N.; Habrich, A.; Hyland, H.; Ibrahim, N.; Iozzo, T.; Jawaheer-Fenaoui, A.; Jaworski, J. J.; Jhajj, M. K.; Jones, J.; Joyette, R.; Kaudeer, S.; Kelley, S.; Kiani, S.; Koayes, M.; Kpata, A. J. A.-A. L.; Maingot, S.; Martin, S.; Mathers, K.; McCullogh, S.; McNamara, K.; Mendonca, J.; Mohammad, K.; Momtaz, S. A.; Navaratnarajah, T.; Nguyen-Duong, K.; Omran, M.; Ortiz, A.; Patel, A.; Paul-Cole, K.; Plaisir, P.-A.; Porras Marroquin, J. A.; Prevost, A.; Quach, A.; Rafal, A. J.; Ramsarun, R.; Rhnima, S.; Rili, L.; Safir, N.; Samson, E.; Sandiford, R. R.; Secondi, S.; Shahid, S.; Shahroozi, M.; Sidibé, F.; Smith, M.; Sreng Flores, A. M.; Suarez Ybarra, A.; Sénéchal, R.; Taifour, T.; Tang, L.; Trapid, A.; Tremblay Potvin, M.; Wainberg, J.; Wang, D. N.; Weissenberg, M.; White, A.; Wilkinson, G.; Williams, B.; Wilson, J. R.; Zoppi, J.; Zouboulakis, K.; Gamberi, C. Metabolic Networks of the Human Gut Microbiota. Microbiology (Reading) 2020, 166 (2), 96–119. [CrossRef]
  84. Flores, R.; Shi, J.; Fuhrman, B.; Xu, X.; Veenstra, T. D.; Gail, M. H.; Gajer, P.; Ravel, J.; Goedert, J. J. Fecal Microbial Determinants of Fecal and Systemic Estrogens and Estrogen Metabolites: A Cross-Sectional Study. J Transl Med 2012, 10, 253. [CrossRef]
  85. Fuhrman, B. J.; Feigelson, H. S.; Flores, R.; Gail, M. H.; Xu, X.; Ravel, J.; Goedert, J. J. Associations of the Fecal Microbiome with Urinary Estrogens and Estrogen Metabolites in Postmenopausal Women. J Clin Endocrinol Metab 2014, 99 (12), 4632–4640. [CrossRef]
  86. Goedert, J. J.; Jones, G.; Hua, X.; Xu, X.; Yu, G.; Flores, R.; Falk, R. T.; Gail, M. H.; Shi, J.; Ravel, J.; Feigelson, H. S. Investigation of the Association between the Fecal Microbiota and Breast Cancer in Postmenopausal Women: A Population-Based Case-Control Pilot Study. J Natl Cancer Inst 2015, 107 (8), djv147. [CrossRef]
  87. Adlercreutz, H. Western Diet and Western Diseases: Some Hormonal and Biochemical Mechanisms and Associations. Scand J Clin Lab Invest Suppl 1990, 201, 3–23.
  88. Goldin, B. R.; Adlercreutz, H.; Gorbach, S. L.; Warram, J. H.; Dwyer, J. T.; Swenson, L.; Woods, M. N. Estrogen Excretion Patterns and Plasma Levels in Vegetarian and Omnivorous Women. N Engl J Med 1982, 307 (25), 1542–1547. [CrossRef]
  89. Saarinen, N. M.; Wärri, A.; Airio, M.; Smeds, A.; Mäkelä, S. Role of Dietary Lignans in the Reduction of Breast Cancer Risk. Mol Nutr Food Res 2007, 51 (7), 857–866. [CrossRef]
  90. Selber-Hnatiw, S.; Rukundo, B.; Ahmadi, M.; Akoubi, H.; Al-Bizri, H.; Aliu, A. F.; Ambeaghen, T. U.; Avetisyan, L.; Bahar, I.; Baird, A.; Begum, F.; Ben Soussan, H.; Blondeau-Éthier, V.; Bordaries, R.; Bramwell, H.; Briggs, A.; Bui, R.; Carnevale, M.; Chancharoen, M.; Chevassus, T.; Choi, J. H.; Coulombe, K.; Couvrette, F.; D’Abreau, S.; Davies, M.; Desbiens, M.-P.; Di Maulo, T.; Di Paolo, S.-A.; Do Ponte, S.; Dos Santos Ribeiro, P.; Dubuc-Kanary, L.-A.; Duncan, P. K.; Dupuis, F.; El-Nounou, S.; Eyangos, C. N.; Ferguson, N. K.; Flores-Chinchilla, N. R.; Fotakis, T.; Gado Oumarou H D, M.; Georgiev, M.; Ghiassy, S.; Glibetic, N.; Grégoire Bouchard, J.; Hassan, T.; Huseen, I.; Ibuna Quilatan, M.-F.; Iozzo, T.; Islam, S.; Jaunky, D. B.; Jeyasegaram, A.; Johnston, M.-A.; Kahler, M. R.; Kaler, K.; Kamani, C.; Karimian Rad, H.; Konidis, E.; Konieczny, F.; Kurianowicz, S.; Lamothe, P.; Legros, K.; Leroux, S.; Li, J.; Lozano Rodriguez, M. E.; Luponio-Yoffe, S.; Maalouf, Y.; Mantha, J.; McCormick, M.; Mondragon, P.; Narayana, T.; Neretin, E.; Nguyen, T. T. T.; Niu, I.; Nkemazem, R. B.; O’Donovan, M.; Oueis, M.; Paquette, S.; Patel, N.; Pecsi, E.; Peters, J.; Pettorelli, A.; Poirier, C.; Pompa, V. R.; Rajen, H.; Ralph, R.-O.; Rosales-Vasquez, J.; Rubinshtein, D.; Sakr, S.; Sebai, M. S.; Serravalle, L.; Sidibe, F.; Sinnathurai, A.; Soho, D.; Sundarakrishnan, A.; Svistkova, V.; Ugbeye, T. E.; Vasconcelos, M. S.; Vincelli, M.; Voitovich, O.; Vrabel, P.; Wang, L.; Wasfi, M.; Zha, C. Y.; Gamberi, C. Human Gut Microbiota: Toward an Ecology of Disease. Front Microbiol 2017, 8, 1265. [CrossRef]
  91. Adlercreutz, H.; Martin, F.; Pulkkinen, M.; Dencker, H.; Rimér, U.; Sjöberg, N. O.; Tikkanen, M. J. Intestinal Metabolism of Estrogens. J Clin Endocrinol Metab 1976, 43 (3), 497–505. [CrossRef]
  92. Yaghjyan, L.; Colditz, G. A. Estrogens in the Breast Tissue: A Systematic Review. Cancer Causes Control 2011, 22 (4), 529–540. [CrossRef]
  93. Chan, A. A.; Bashir, M.; Rivas, M. N.; Duvall, K.; Sieling, P. A.; Pieber, T. R.; Vaishampayan, P. A.; Love, S. M.; Lee, D. J. Characterization of the Microbiome of Nipple Aspirate Fluid of Breast Cancer Survivors. Sci Rep 2016, 6, 28061. [CrossRef]
  94. Gorbach, S. L.; Goldin, B. R. Diet and the Excretion and Enterohepatic Cycling of Estrogens. Prev Med 1987, 16 (4), 525–531. [CrossRef]
  95. Alpuim Costa, D.; Nobre, J. G.; Batista, M. V.; Ribeiro, C.; Calle, C.; Cortes, A.; Marhold, M.; Negreiros, I.; Borralho, P.; Brito, M.; Cortes, J.; Braga, S. A.; Costa, L. Human Microbiota and Breast Cancer—Is There Any Relevant Link?—A Literature Review and New Horizons Toward Personalised Medicine. Front Microbiol 2021, 12, 584332. [CrossRef]
  96. Wiebe, J. P.; Muzia, D.; Hu, J.; Szwajcer, D.; Hill, S. A.; Seachrist, J. L. The 4-Pregnene and 5α-Pregnane Progesterone Metabolites Formed in Nontumorous and Tumorous Breast Tissue Have Opposite Effects on Breast Cell Proliferation and Adhesion1. Cancer Research 2000, 60 (4), 936–943.
  97. Urbaniak, C.; Gloor, G. B.; Brackstone, M.; Scott, L.; Tangney, M.; Reid, G. The Microbiota of Breast Tissue and Its Association with Breast Cancer. Appl Environ Microbiol 2016, 82 (16), 5039–5048. [CrossRef]
  98. Chadha, J.; Nandi, D.; Atri, Y.; Nag, A. Significance of Human Microbiome in Breast Cancer: Tale of an Invisible and an Invincible. Semin Cancer Biol 2021, 70, 112–127. [CrossRef]
  99. Xuan, C.; Shamonki, J. M.; Chung, A.; Dinome, M. L.; Chung, M.; Sieling, P. A.; Lee, D. J. Microbial Dysbiosis Is Associated with Human Breast Cancer. PLoS One 2014, 9 (1), e83744. [CrossRef]
  100. Lawani-Luwaji, E. U.; Alade, T. Sphingomonadaceae: Protective against Breast Cancer? Bulletin of the National Research Centre 2020, 44 (1), 191. [CrossRef]
  101. Struijs, K.; Vincken, J.-P.; Gruppen, H. Bacterial Conversion of Secoisolariciresinol and Anhydrosecoisolariciresinol. J Appl Microbiol 2009, 107 (1), 308–317. [CrossRef]
  102. Gaya, P.; Medina, M.; Sánchez-Jiménez, A.; Landete, J. M. Phytoestrogen Metabolism by Adult Human Gut Microbiota. Molecules 2016, 21 (8), E1034. [CrossRef]
  103. Roncaglia, L.; Amaretti, A.; Raimondi, S.; Leonardi, A.; Rossi, M. Role of Bifidobacteria in the Activation of the Lignan Secoisolariciresinol Diglucoside. Appl Microbiol Biotechnol 2011, 92 (1), 159–168. [CrossRef]
  104. Karabin, M.; Hudcova, T.; Jelinek, L.; Dostalek, P. Biotransformations and Biological Activities of Hop Flavonoids. Biotechnol Adv 2015, 33 (6 Pt 2), 1063–1090. [CrossRef]
  105. Possemiers, S.; Heyerick, A.; Robbens, V.; De Keukeleire, D.; Verstraete, W. Activation of Proestrogens from Hops (Humulus Lupulus L.) by Intestinal Microbiota; Conversion of Isoxanthohumol into 8-Prenylnaringenin. J Agric Food Chem 2005, 53 (16), 6281–6288. [CrossRef]
  106. Milligan, S. R.; Kalita, J. C.; Heyerick, A.; Rong, H.; De Cooman, L.; De Keukeleire, D. Identification of a Potent Phytoestrogen in Hops (Humulus Lupulus L.) and Beer. J Clin Endocrinol Metab 1999, 84 (6), 2249–2252. [CrossRef]
  107. Overk, C. R.; Yao, P.; Chadwick, L. R.; Nikolic, D.; Sun, Y.; Cuendet, M. A.; Deng, Y.; Hedayat, A. S.; Pauli, G. F.; Farnsworth, N. R.; van Breemen, R. B.; Bolton, J. L. Comparison of the in Vitro Estrogenic Activities of Compounds from Hops (Humulus Lupulus) and Red Clover (Trifolium Pratense). J Agric Food Chem 2005, 53 (16), 6246–6253. [CrossRef]
  108. Schaefer, O.; Hümpel, M.; Fritzemeier, K.-H.; Bohlmann, R.; Schleuning, W.-D. 8-Prenyl Naringenin Is a Potent ERalpha Selective Phytoestrogen Present in Hops and Beer. J Steroid Biochem Mol Biol 2003, 84 (2–3), 359–360. [CrossRef]
  109. Rosenfeld, C. S. Gut Dysbiosis in Animals Due to Environmental Chemical Exposures. Front Cell Infect Microbiol 2017, 7, 396. [CrossRef]
  110. Andújar, N.; Gálvez-Ontiveros, Y.; Zafra-Gómez, A.; Rodrigo, L.; Álvarez-Cubero, M. J.; Aguilera, M.; Monteagudo, C.; Rivas, A. A. Bisphenol A Analogues in Food and Their Hormonal and Obesogenic Effects: A Review. Nutrients 2019, 11 (9), E2136. [CrossRef]
  111. Gálvez-Ontiveros, Y.; Páez, S.; Monteagudo, C.; Rivas, A. Endocrine Disruptors in Food: Impact on Gut Microbiota and Metabolic Diseases. Nutrients 2020, 12 (4), E1158. [CrossRef]
  112. Velmurugan, G.; Ramprasath, T.; Gilles, M.; Swaminathan, K.; Ramasamy, S. Gut Microbiota, Endocrine-Disrupting Chemicals, and the Diabetes Epidemic. Trends Endocrinol Metab 2017, 28 (8), 612–625. [CrossRef]
  113. Claus, S. P.; Guillou, H.; Ellero-Simatos, S. Erratum: The Gut Microbiota: A Major Player in the Toxicity of Environmental Pollutants? NPJ Biofilms Microbiomes 2017, 3, 17001. [CrossRef]
  114. Snedeker, S. M.; Hay, A. G. Do Interactions between Gut Ecology and Environmental Chemicals Contribute to Obesity and Diabetes? Environ Health Perspect 2012, 120 (3), 332–339. [CrossRef]
  115. Cresci, G. A.; Bawden, E. Gut Microbiome: What We Do and Don’t Know. Nutr Clin Pract 2015, 30 (6), 734–746. [CrossRef]
  116. Heintz-Buschart, A.; Wilmes, P. Human Gut Microbiome: Function Matters. Trends Microbiol 2018, 26 (7), 563–574. [CrossRef]
  117. Salvucci, E. The Human-Microbiome Superorganism and Its Modulation to Restore Health. International Journal of Food Sciences and Nutrition 2019, 70 (7), 781–795. [CrossRef]
  118. Clavel, T.; Henderson, G.; Alpert, C.-A.; Philippe, C.; Rigottier-Gois, L.; Doré, J.; Blaut, M. Intestinal Bacterial Communities That Produce Active Estrogen-like Compounds Enterodiol and Enterolactone in Humans. Appl Environ Microbiol 2005, 71 (10), 6077–6085. [CrossRef]
  119. Guadamuro, L.; Delgado, S.; Redruello, B.; Flórez, A. B.; Suárez, A.; Martínez-Camblor, P.; Mayo, B. Equol Status and Changes in Fecal Microbiota in Menopausal Women Receiving Long-Term Treatment for Menopause Symptoms with a Soy-Isoflavone Concentrate. Front Microbiol 2015, 6, 777. [CrossRef]
  120. Li, Z.; Henning, S. M.; Lee, R.-P.; Lu, Q.-Y.; Summanen, P. H.; Thames, G.; Corbett, K.; Downes, J.; Tseng, C.-H.; Finegold, S. M.; Heber, D. Pomegranate Extract Induces Ellagitannin Metabolite Formation and Changes Stool Microbiota in Healthy Volunteers. Food Funct. 2015, 6 (8), 2487–2495. [CrossRef]
  121. Luo, J.; Li, Y.; Mai, Y.; Gao, L.; Ou, S.; Wang, Y.; Liu, L.; Peng, X. Flaxseed Gum Reduces Body Weight by Regulating Gut Microbiota. Journal of Functional Foods 2018, 47, 136–142. [CrossRef]
  122. Cho, S.-Y.; Kim, J.; Lee, J. H.; Sim, J. H.; Cho, D.-H.; Bae, I.-H.; Lee, H.; Seol, M. A.; Shin, H. M.; Kim, T.-J.; Kim, D.-Y.; Lee, S.-H.; Shin, S. S.; Im, S.-H.; Kim, H.-R. Modulation of Gut Microbiota and Delayed Immunosenescence as a Result of Syringaresinol Consumption in Middle-Aged Mice. Sci Rep 2016, 6, 39026. [CrossRef]
  123. Bode, L. M.; Bunzel, D.; Huch, M.; Cho, G.-S.; Ruhland, D.; Bunzel, M.; Bub, A.; Franz, C. M. A. P.; Kulling, S. E. In Vivo and in Vitro Metabolism of Trans-Resveratrol by Human Gut Microbiota. Am J Clin Nutr 2013, 97 (2), 295–309. [CrossRef]
  124. Chen, M.; Yi, L.; Zhang, Y.; Zhou, X.; Ran, L.; Yang, J.; Zhu, J.; Zhang, Q.; Mi, M. Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. mBio 2016, 7 (2), e02210-02215. [CrossRef]
  125. Sung, M. M.; Kim, T. T.; Denou, E.; Soltys, C.-L. M.; Hamza, S. M.; Byrne, N. J.; Masson, G.; Park, H.; Wishart, D. S.; Madsen, K. L.; Schertzer, J. D.; Dyck, J. R. B. Improved Glucose Homeostasis in Obese Mice Treated With Resveratrol Is Associated With Alterations in the Gut Microbiome. Diabetes 2017, 66 (2), 418–425. [CrossRef]
  126. Sung, M. M.; Byrne, N. J.; Robertson, I. M.; Kim, T. T.; Samokhvalov, V.; Levasseur, J.; Soltys, C.-L.; Fung, D.; Tyreman, N.; Denou, E.; Jones, K. E.; Seubert, J. M.; Schertzer, J. D.; Dyck, J. R. B. Resveratrol Improves Exercise Performance and Skeletal Muscle Oxidative Capacity in Heart Failure. Am J Physiol Heart Circ Physiol 2017, 312 (4), H842–H853. [CrossRef]
  127. Kim, T. T.; Parajuli, N.; Sung, M. M.; Bairwa, S. C.; Levasseur, J.; Soltys, C.-L. M.; Wishart, D. S.; Madsen, K.; Schertzer, J. D.; Dyck, J. R. B. Fecal Transplant from Resveratrol-Fed Donors Improves Glycaemia and Cardiovascular Features of the Metabolic Syndrome in Mice. Am J Physiol Endocrinol Metab 2018, 315 (4), E511–E519. [CrossRef]
  128. Giuliani, C.; Marzorati, M.; Innocenti, M.; Vilchez-Vargas, R.; Vital, M.; Pieper, D. H.; Van de Wiele, T.; Mulinacci, N. Dietary Supplement Based on Stilbenes: A Focus on Gut Microbial Metabolism by the in Vitro Simulator M-SHIME®. Food Funct 2016, 7 (11), 4564–4575. [CrossRef]
  129. Landete, J. M.; Gaya, P.; Rodríguez, E.; Langa, S.; Peirotén, Á.; Medina, M.; Arqués, J. L. Probiotic Bacteria for Healthier Aging: Immunomodulation and Metabolism of Phytoestrogens. Biomed Res Int 2017, 2017, 5939818. [CrossRef]
  130. McCann, S. E.; Thompson, L. U.; Nie, J.; Dorn, J.; Trevisan, M.; Shields, P. G.; Ambrosone, C. B.; Edge, S. B.; Li, H.-F.; Kasprzak, C.; Freudenheim, J. L. Dietary Lignan Intakes in Relation to Survival among Women with Breast Cancer: The Western New York Exposures and Breast Cancer (WEB) Study. Breast Cancer Res Treat 2010, 122 (1), 229–235. [CrossRef]
  131. Org, E.; Mehrabian, M.; Parks, B. W.; Shipkova, P.; Liu, X.; Drake, T. A.; Lusis, A. J. Sex Differences and Hormonal Effects on Gut Microbiota Composition in Mice. Gut Microbes 2016, 7 (4), 313–322. [CrossRef]
  132. Van de Wiele, T.; Vanhaecke, L.; Boeckaert, C.; Peru, K.; Headley, J.; Verstraete, W.; Siciliano, S. Human Colon Microbiota Transform Polycyclic Aromatic Hydrocarbons to Estrogenic Metabolites. Environ Health Perspect 2005, 113 (1), 6–10. [CrossRef]
  133. Feng, P.; Ye, Z.; Kakade, A.; Virk, A. K.; Li, X.; Liu, P. A Review on Gut Remediation of Selected Environmental Contaminants: Possible Roles of Probiotics and Gut Microbiota. Nutrients 2019, 11 (1), 22. [CrossRef]
  134. Choi, Y. J.; Seelbach, M. J.; Pu, H.; Eum, S. Y.; Chen, L.; Zhang, B.; Hennig, B.; Toborek, M. Polychlorinated Biphenyls Disrupt Intestinal Integrity via NADPH Oxidase-Induced Alterations of Tight Junction Protein Expression. Environ Health Perspect 2010, 118 (7), 976–981. [CrossRef]
  135. Blandino, G.; Inturri, R.; Lazzara, F.; Di Rosa, M.; Malaguarnera, L. Impact of Gut Microbiota on Diabetes Mellitus. Diabetes Metab 2016, 42 (5), 303–315. [CrossRef]
  136. Barlow, G. M.; Yu, A.; Mathur, R. Role of the Gut Microbiome in Obesity and Diabetes Mellitus. Nutr Clin Pract 2015, 30 (6), 787–797. [CrossRef]
  137. Maruvada, P.; Leone, V.; Kaplan, L. M.; Chang, E. B. The Human Microbiome and Obesity: Moving beyond Associations. Cell Host Microbe 2017, 22 (5), 589–599. [CrossRef]
  138. Bouter, K. E.; van Raalte, D. H.; Groen, A. K.; Nieuwdorp, M. Role of the Gut Microbiome in the Pathogenesis of Obesity and Obesity-Related Metabolic Dysfunction. Gastroenterology 2017, 152 (7), 1671–1678. [CrossRef]
  139. Chen, X.; Devaraj, S. Gut Microbiome in Obesity, Metabolic Syndrome, and Diabetes. Curr Diab Rep 2018, 18 (12), 129. [CrossRef]
  140. Vallianou, N. G.; Stratigou, T.; Tsagarakis, S. Microbiome and Diabetes: Where Are We Now? Diabetes Research and Clinical Practice 2018, 146, 111–118. [CrossRef]
  141. Saad, M. J. A.; Santos, A.; Prada, P. O. Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance. Physiology (Bethesda) 2016, 31 (4), 283–293. [CrossRef]
  142. Dalamaga, M. Obesity, Insulin Resistance, Adipocytokines and Breast Cancer: New Biomarkers and Attractive Therapeutic Targets. World J Exp Med 2013, 3 (3), 34–42. [CrossRef]
  143. Crisóstomo, J.; Matafome, P.; Santos-Silva, D.; Gomes, A. L.; Gomes, M.; Patrício, M.; Letra, L.; Sarmento-Ribeiro, A. B.; Santos, L.; Seiça, R. Hyperresistinemia and Metabolic Dysregulation: A Risky Crosstalk in Obese Breast Cancer. Endocrine 2016, 53 (2), 433–442. [CrossRef]
  144. Ruiz, D.; Becerra, M.; Jagai, J. S.; Ard, K.; Sargis, R. M. Disparities in Environmental Exposures to Endocrine-Disrupting Chemicals and Diabetes Risk in Vulnerable Populations. Diabetes Care 2018, 41 (1), 193–205. [CrossRef]
  145. Chevalier, N.; Fénichel, P. Endocrine Disruptors: New Players in the Pathophysiology of Type 2 Diabetes? Diabetes Metab 2015, 41 (2), 107–115. [CrossRef]
  146. Casals-Casas, C.; Desvergne, B. Endocrine Disruptors: From Endocrine to Metabolic Disruption. Annu Rev Physiol 2011, 73, 135–162. [CrossRef]
  147. Bodin, J.; Stene, L. C.; Nygaard, U. C. Can Exposure to Environmental Chemicals Increase the Risk of Diabetes Type 1 Development? Biomed Res Int 2015, 2015, 208947. [CrossRef]
  148. Petrakis, D.; Vassilopoulou, L.; Mamoulakis, C.; Psycharakis, C.; Anifantaki, A.; Sifakis, S.; Docea, A. O.; Tsiaoussis, J.; Makrigiannakis, A.; Tsatsakis, A. M. Endocrine Disruptors Leading to Obesity and Related Diseases. Int J Environ Res Public Health 2017, 14 (10), E1282. [CrossRef]
  149. Le Magueresse-Battistoni, B.; Multigner, L.; Beausoleil, C.; Rousselle, C. Effects of Bisphenol A on Metabolism and Evidences of a Mode of Action Mediated through Endocrine Disruption. Mol Cell Endocrinol 2018, 475, 74–91. [CrossRef]
  150. Ahn, C.; Kang, H.-S.; Lee, J.-H.; Hong, E.-J.; Jung, E.-M.; Yoo, Y.-M.; Jeung, E.-B. Bisphenol A and Octylphenol Exacerbate Type 1 Diabetes Mellitus by Disrupting Calcium Homeostasis in Mouse Pancreas. Toxicol Lett 2018, 295, 162–172. [CrossRef]
  151. Guo, H.; Yan, H.; Cheng, D.; Wei, X.; Kou, R.; Si, J. Tributyltin Exposure Induces Gut Microbiome Dysbiosis with Increased Body Weight Gain and Dyslipidemia in Mice. Environ Toxicol Pharmacol 2018, 60, 202–208. [CrossRef]
  152. Bansal, A.; Henao-Mejia, J.; Simmons, R. A. Immune System: An Emerging Player in Mediating Effects of Endocrine Disruptors on Metabolic Health. Endocrinology 2018, 159 (1), 32–45. [CrossRef]
  153. Nowak, K.; Jabłońska, E.; Ratajczak-Wrona, W. Immunomodulatory Effects of Synthetic Endocrine Disrupting Chemicals on the Development and Functions of Human Immune Cells. Environment International 2019, 125, 350–364. [CrossRef]
  154. Coruzzi, G. Overview of Gastrointestinal Toxicology. Curr Protoc Toxicol 2010, Chapter 21, Unit 21.1. [CrossRef]
  155. Takiishi, T.; Fenero, C. I. M.; Câmara, N. O. S. Intestinal Barrier and Gut Microbiota: Shaping Our Immune Responses throughout Life. Tissue Barriers 2017, 5 (4), e1373208. [CrossRef]
  156. Panebianco, C., Andriulli, A., & Pazienza, V. (2018). Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. Microbiome, 6(1), 1-13.
  157. Martina, D. M. (2020). Gut Microbiota and Trastuzumab Response in HER2- Positive Breast Cancer. Ph. D. thesis, England: The Open University. [CrossRef]
  158. Sivan, A., Corrales, L., Hubert, N., Williams, J. B., Aquino-Michaels, K., Earley, Z. M., et al. (2015). Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089. [CrossRef]
Table 1. Interplay between phytoestrogens and their metabolites with microrganism.
Table 1. Interplay between phytoestrogens and their metabolites with microrganism.
Chemical family Molecules Microrganisms References
Lignans Anhydrosecoisolariciresinol
Secoisolariciresinol diglucoside
Syringaresinol
C. methoxybenzovorans
B. pseudocatenulatum WC 401
Firmicutes
Bacteroidetes
[101,102, 103,122]
Isoflavones Coumestrol
Genistein
Equol
Daidzein
F. prausnitzii
Lactobacillus
Enterococcus
[119]
Steroids Estradiol
Estrone
Collinsella, Edwardsiella, Alistipes, Bacteroides, Bifidobacterium, Citrobacter, Clostridium, Dermabacter, Escherichia, Faecalibacterium, Lactobacillus, Marvinbryantia, Propionibacterium, Roseburia, Tannerella [22,82,83,84,85,86]
Prenylflavonoids Xanthohumol
Desmethyxanthohumol
E. limosum [106]
Stilbenes Resveratrol
Trans-resveratrol
Dihydroresveratrol
3,4′–dihydroxybibenzyl,
3,4′-dihydroxy-trans-stilbene
Firmicutes
Bacteroidetes,
Actinobacteria
Verrucomicrobia,
Cyanobacteria
[123,124,125,126,127]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated