Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Efficient Operations of Micro-Grids with Meshed Topology and Under Uncertainty through Exact Satisfaction of AC-PF, Droop Control and Tap-Changer Constraints

Version 1 : Received: 28 March 2022 / Approved: 30 March 2022 / Online: 30 March 2022 (10:20:43 CEST)

A peer-reviewed article of this Preprint also exists.

Bragin, M.A.; Yan, B.; Kumar, A.; Yu, N.; Zhang, P. Efficient Operations of Micro-Grids with Meshed Topology and Under Uncertainty through Exact Satisfaction of AC-PF, Droop Control and Tap-Changer Constraints. Energies 2022, 15, 3662. Bragin, M.A.; Yan, B.; Kumar, A.; Yu, N.; Zhang, P. Efficient Operations of Micro-Grids with Meshed Topology and Under Uncertainty through Exact Satisfaction of AC-PF, Droop Control and Tap-Changer Constraints. Energies 2022, 15, 3662.

Abstract

Micro-grids’ operations offer local reliability; in the event of faults or low voltage/frequency events on the utility side, micro-grids can disconnect from the main grid and operate autonomously while providing the continued supply of power to local customers. With the ever-increasing penetration of renewable generation, however, the operations of micro-grids become increasingly complicated because of the associated fluctuations of voltages. As a result, transformer taps are adjusted frequently, thereby leading to the fast degradation of expensive tap-changer transformers. In the islanding mode, the difficulties also come from the drop of voltage and frequency upon disconnecting from the main grid. To appropriately model the above, the nonlinear AC power flow constraints are necessary. Computationally, the discrete nature of tap-changer operations and the stochasticity caused by renewables add two layers of difficulty on top of a complicated AC-OPF problem. To resolve the above computational difficulties, the main principles of the recently-developed "l1-proximal" Surrogate Lagrangian Relaxation are extended. Testing results based on 9-bus system demonstrate the efficiency of the method to obtain the exact feasible solutions for micro-grid operations thereby avoiding approximations inherent to existing methods, while demonstrating that through the optimization, 1. the number of tap changes is drastically reduced, and 2. the method is capable of handling networks with meshed topologies.

Keywords

Micro-grids; Droop Controls; Tap Changers; Islanded Mode; AC OPF; Lagrangian Relaxation; Renewable Generation; Markov Process; Mixed-Integer Nonlinear Programming

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.