Preprint
Article

This version is not peer-reviewed.

Research on Electromagnetic Radiation Mechanism During Detonation of Energetic Material

A peer-reviewed article of this preprint also exists.

Submitted:

28 February 2022

Posted:

02 March 2022

You are already at the latest version

Abstract
In the process of deflagration of energetic materials, strong electromagnetic radiation is to be generated, which causes the surrounding electronic equipment to fail to work normally. To solve this problem, it is necessary to clarify the mechanism of electromagnetic radiation generated by energetic materials. The mechanism of plasma changed by the deflagration of energetic materials is an important topic in the aerospace and geophysics fields. The academic community holds two main viewpoints on the mechanism of electromagnetic radiation generated by energetic materials: one is that the solid material is squeezed and deformed during the deflagration of energetic materials, and the charges of different polarities rub in space to form effective electric dipoles, which eventually generate electromagnetic radiation. Another view is that the deflagration of energetic materials causes the temperature of the medium to rise sharply, and bremsstrahlung is formed during the compression and diffusion of the high-temperature wave front, resulting in the generation of electromagnetic radiation. This paper, based on theoretical analysis and experimental data, holds the view that electromagnetic radiation is generated by the high-temperature thermal effect. It studies the relationship between temperature and electromagnetic radiation and obtains quantitative analysis conclusions.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated