Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Otto Engine for the q-State Clock Model

Version 1 : Received: 22 January 2022 / Approved: 24 January 2022 / Online: 24 January 2022 (09:28:39 CET)

A peer-reviewed article of this Preprint also exists.

Aguilera, M.A.; Peña, F.J.; Negrete, O.A.; Vargas, P. Otto Engine for the q-State Clock Model. Entropy 2022, 24, 268. Aguilera, M.A.; Peña, F.J.; Negrete, O.A.; Vargas, P. Otto Engine for the q-State Clock Model. Entropy 2022, 24, 268.

Abstract

This present work explores the performance of a thermal-magnetic engine of Otto type, considering as a working substance an effective interacting spin model corresponding to the q− state clock model. We obtain all the thermodynamic quantities for the q = 2, 4, 6, 8 cases in a small lattice size (3×3 with free boundary conditions) by using the exact partition function calculated from the energies of all the accessible microstates of the system. The extension to bigger lattices was performed using the mean-field approximation. Our results indicate that the total work extraction of the cycle is highest for the q=4 case, while the performance for the Ising model (q=2) is the lowest of all cases studied. These results are strongly linked with the phase diagram of the working substance and the location of the cycle in the different magnetic phases present, where we find that the transition from a ferromagnetic to a paramagnetic phase extracts more work than one of the Berezinskii–Kosterlitz–Thouless to paramagnetic type. Additionally, as the size of the lattice increases, the extraction work is lower than smaller lattices for all values of q presented in this study.

Keywords

q-state clock model; entropy; Berezinskii-Kosterlitz-Thouless transition; Otto engine; Mean- field approximation

Subject

Physical Sciences, Condensed Matter Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.