Preprint
Article

This version is not peer-reviewed.

Preparation and Characterization of Multi-doped Porous Carbon Nanofibers from Carbonization in Different Atmospheres and Their Oxygen Electrocatalytic Properties Research

A peer-reviewed article of this preprint also exists.

Submitted:

08 January 2022

Posted:

10 January 2022

You are already at the latest version

Abstract
Recently, electrocatalysts for oxygen reduction reactions (ORRs) as well as oxygen evolution reactions (OERs) hinged on electrospun nanofiber composites have attracted wide research attention. Transition metal elements and heteroatomic doping are important methods used to enhance their catalytic performances. Lately, the construction of electrocatalysts based on metal-organic framework (MOF) electrospun nanofibers has become a research hotspot. In this work, bimetallic NixCoy-ZIF nanocrystals were synthesized in an aqueous solution, followed by NixCoy-ZIF/PAN electrospun nanofiber precursors, which were prepared by a simple electrospinning method. Bimetal (Ni-Co) porous carbon nanofiber catalysts doped with nitrogen, oxygen, and sulfur elements were obtained at high-temperature carbonization treatment in different atmospheres (Ar, Air, and H2S), respectively. The morphological properties, structures, and composition were characterized by SEM, TEM, SAED, XRD, and XPS. Also, the specific surface area of materials and their pore size distribution was characterized by BET. Linear sweep voltammetry curves investigated catalyst performances towards oxygen reduction and evolution reactions. Importantly, Ni1Co2-ZIFs/PAN-Ar yielded the best ORR activity, whereas Ni1Co1-ZIFs/PAN-Air exhibited the best OER performance. This work provides significant guidance for the preparation and characterization of multi-doped porous carbon nanofibers carbonized in different atmospheres.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated