Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Structural Defects in Few-Layer Graphene Nanostructures Synthesized by Self-propagating High-Temperature Synthesis

Version 1 : Received: 5 January 2022 / Approved: 6 January 2022 / Online: 6 January 2022 (12:07:39 CET)

A peer-reviewed article of this Preprint also exists.

Voznyakovskii, A.; Neverovskaya, A.; Vozniakovskii, A.; Kidalov, S. A Quantitative Chemical Method for Determining the Surface Concentration of Stone–Wales Defects for 1D and 2D Carbon Nanomaterials. Nanomaterials 2022, 12, 883. Voznyakovskii, A.; Neverovskaya, A.; Vozniakovskii, A.; Kidalov, S. A Quantitative Chemical Method for Determining the Surface Concentration of Stone–Wales Defects for 1D and 2D Carbon Nanomaterials. Nanomaterials 2022, 12, 883.

Abstract

A quantitative method is proposed to determine of Stone-Wales defects for carbon nanostructures with sp2 hybridization of carbon atoms. The technique is based on the diene synthesis reaction (Diels-Alder reaction). The proposed method was used to determine Stone-Wales defects in the few-layer graphene (FLG) nanostructures synthesized by the self-propagating high-temperature synthesis (SHS) process, in reduced graphene oxide (rGO) synthesized based on the method of Hammers and in the single-walled carbon nanotubes (SWCNT) TUBAL trademark, Russia. Our research has shown that the structure of FLG is free of Stone-Wales defects, while the surface concentration of Stone-Wales defects in TUBAL carbon nanotubes is 1.1×10-5 mol/m2 and 3.6×10-5 mol/m2 for rGO.

Keywords

few-layer graphene; structural defects; self-propagating high-temperature synthesis; Stone-Wales defects; graphene nanostructures, carbon nanotubes, reduced graphene oxide.

Subject

Chemistry and Materials Science, Nanotechnology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.