Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Flow Control in Wings and Discovery of Novel Approaches via Deep Reinforcement Learning

Version 1 : Received: 4 January 2022 / Approved: 6 January 2022 / Online: 6 January 2022 (09:36:50 CET)

A peer-reviewed article of this Preprint also exists.

Vinuesa, R.; Lehmkuhl, O.; Lozano-Durán, A.; Rabault, J. Flow Control in Wings and Discovery of Novel Approaches via Deep Reinforcement Learning. Fluids 2022, 7, 62. Vinuesa, R.; Lehmkuhl, O.; Lozano-Durán, A.; Rabault, J. Flow Control in Wings and Discovery of Novel Approaches via Deep Reinforcement Learning. Fluids 2022, 7, 62.

Abstract

In this review we summarize existing trends of flow control used to improve the aerodynamic efficiency of wings. We first discuss active methods to control turbulence, starting with flat-plate geometries and building towards the more complicated flow around wings. Then, we discuss active approaches to control separation, a crucial aspect towards achieving high aerodynamic efficiency. Furthermore, we highlight methods relying on turbulence simulation, and discuss various levels of modelling. Finally, we thoroughly revise data-driven methods, their application to flow control, and focus on deep reinforcement learning (DRL). We conclude that this methodology has the potential to discover novel control strategies in complex turbulent flows of aerodynamic relevance.

Keywords

turbulence; flow control; simulation; aerodynamics; machine learning; deep reinforcement learning

Subject

Engineering, Mechanical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.