Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Timescape: A Simple Spatiotemporal Interpolation Tool

Version 1 : Received: 23 December 2021 / Approved: 24 December 2021 / Online: 24 December 2021 (11:16:17 CET)

A peer-reviewed article of this Preprint also exists.

Ciolfi, M.; Chiocchini, F.; Pace, R.; Russo, G.; Lauteri, M. Timescape: A Novel Spatiotemporal Modeling Tool. Earth 2022, 3, 259-286. Ciolfi, M.; Chiocchini, F.; Pace, R.; Russo, G.; Lauteri, M. Timescape: A Novel Spatiotemporal Modeling Tool. Earth 2022, 3, 259-286.

Journal reference: Earth 2022, 3, 17
DOI: 10.3390/earth3010017

Abstract

We developed a novel approach in the field of spatiotemporal modelling, based on the spatialisation of time: the Timescape algorithm. It is especially aimed at sparsely distributed datasets in ecological research, whose spatial and temporal variability is strongly entangled. The algorithm is based on the definition of a spatiotemporal distance that incorporates a causality constraint and that is capable of accommodating the seasonal behaviour of the modelled variable as well. The actual modelling is conducted exploiting any established spatial interpolation technique, substituting the ordinary spatial distance with our Timescape distance, thus sorting, from the same input set of observations, those causally related to each estimated value at a given site and time. The notion of causality is expressed topologically and it has to be tuned for each particular case. The Timescape algorithm originates from the field of stable isotopes spatial modelling (isoscapes), but in principle it can be used to model any real scalar random field distribution.

Keywords

Spatiotemporal Modelling; Ecological Modelling; Sparse Data; Minkowskian Geometry; Time Series Analysis; Spatial Statistics; Isoscapes

Subject

EARTH SCIENCES, Geoinformatics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.