Preprint
Article

This version is not peer-reviewed.

Two-stage Algorithm for solving Arbitrary Trapezoidal Fully Fuzzy Sylvester Matrix Equations

A peer-reviewed article of this preprint also exists.

Submitted:

08 December 2021

Posted:

09 December 2021

Read the latest preprint version here

Abstract
Many authors proposed analytical methods for solving fully fuzzy Sylvester matrix equation (FFSME) based on Vec-operator and Kronecker product. However, these methods are restricted to nonnegative fuzzy numbers and cannot be extended to FFSME with near-zero fuzzy numbers. The main intention of this paper is to develop a new numerical method for solving FFSME with near-zero trapezoidal fuzzy numbers that provides a wider scope of trapezoidal fully fuzzy Sylvester matrix equation (TrFFSME) in scientific applications. This numerical method can solve the trapezoidal fully fuzzy Sylvester matrix equation with arbitrary coefficients and find all possible finite arbitrary solutions for the system. In order to obtain all possible fuzzy solutions, the TrFFSME is transferred to a system of non-linear equations based on newly developed arithmetic fuzzy multiplication between trapezoidal fuzzy numbers. The fuzzy solutions to the TrFFSME are obtained by developing a new two-stage algorithm. To illustrate the proposed method numerical example is solved.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated