Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Nanometers-Thick Ferromagnetic Surface Produced by Laser Cutting of Diamond

Version 1 : Received: 6 December 2021 / Approved: 7 December 2021 / Online: 7 December 2021 (13:32:45 CET)

A peer-reviewed article of this Preprint also exists.

Setzer, A.; Esquinazi, P.D.; Buga, S.; Georgieva, M.T.; Reinert, T.; Venus, T.; Estrela-Lopis, I.; Ivashenko, A.; Bondarenko, M.; Böhlmann, W.; Meijer, J. Nanometer-Thick Ferromagnetic Surface Produced by Laser Cutting of Diamond. Materials 2022, 15, 1014. Setzer, A.; Esquinazi, P.D.; Buga, S.; Georgieva, M.T.; Reinert, T.; Venus, T.; Estrela-Lopis, I.; Ivashenko, A.; Bondarenko, M.; Böhlmann, W.; Meijer, J. Nanometer-Thick Ferromagnetic Surface Produced by Laser Cutting of Diamond. Materials 2022, 15, 1014.

Abstract

In this work, we demonstrate that cutting diamond crystals with a laser (532 nm wavelength, 0.5 mJ energy, 200 ns pulse duration at 15 kHz) produces a ≲20nm thick surface layer with magnetic order at room temperature. We have measured the magnetic moment with a SQUID magnetometer of six natural and six CVD diamond crystals of different size, nitrogen content and surface orientations. A robust ferromagnetic response at 300 K is observed only for crystals that were cut with the laser along the (100) surface orientation. The magnetic signals are much weaker for the (110) and negligible for the (111) orientations. We attribute the magnetic order to the disordered graphite layer produced by the laser at the diamond surface. The ferromagnetic signal vanished after chemical etching or after moderate temperature annealing. The obtained results indicate that laser treatment of diamond may pave the way to create ferromagnetic spots at its surface.

Keywords

Diamond; Magnetic order; Laser treatment

Subject

Chemistry and Materials Science, Surfaces, Coatings and Films

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.