Jouyandeh, M.; Ganjali, M.R.; Mehrpooya, M.; Abida, O.; Jabbour, K.; Rabiee, N.; Habibzadeh, S.; Mashahdzadeh, A.H.; García-Peñas, A.; Stadler, F.J.; Saeb, M.R. Cure Kinetics of Samarium-Doped Fe3O4/Epoxy Nanocomposites. J. Compos. Sci.2022, 6, 29.
Jouyandeh, M.; Ganjali, M.R.; Mehrpooya, M.; Abida, O.; Jabbour, K.; Rabiee, N.; Habibzadeh, S.; Mashahdzadeh, A.H.; García-Peñas, A.; Stadler, F.J.; Saeb, M.R. Cure Kinetics of Samarium-Doped Fe3O4/Epoxy Nanocomposites. J. Compos. Sci. 2022, 6, 29.
Abstract
There was a question on “how lanthanides doping in iron oxide affects cure kinetics of epoxy-based nanocomposites?” To answer, we synthesized samarium (Sm)-doped Fe3O4 nanoparticles via electrochemical method and characterized it using FTIR, XRD, FE-SEM, EDX, TEM, and XPS analyses. The magnetic particles were uniformly dispersed in epoxy resin to increase the curability of the epoxy/amine system. The effect of the lanthanide dopant on the curing reaction of epoxy with amine was explored by modeling DSC experimental data based on model-free methodology. It was found that Sm3+ in the structure of Fe3O4 crystal participates in cross-linking of epoxy by catalyzing the reaction between epoxide rings and amine groups of curing agents. In addition, the etherification reaction of active OH groups on the surface of nanoparticles reacts with epoxy rings which prolongs the reaction time at the late stage of reaction where diffusion is the dominant mechanism.
Chemistry and Materials Science, Polymers and Plastics
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.