Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Comparative Residual Stress Evaluation in SLM 3D-printed Al-Si-Mg alloy (RS-300) Using the Contour Method, Hole Drilling Laser Speckle Interferometry, X-ray Diffraction and Xe pFIB-DIC Micro-ring-core Milling

Version 1 : Received: 3 December 2021 / Approved: 6 December 2021 / Online: 6 December 2021 (12:06:21 CET)

A peer-reviewed article of this Preprint also exists.

Statnik, E.S.; Uzun, F.; Lipovskikh, S.A.; Kan, Y.V.; Eleonsky, S.I.; Pisarev, V.S.; Somov, P.A.; Salimon, A.I.; Malakhova, Y.V.; Seferyan, A.G.; Ryabov, D.K.; Korsunsky, A.M. Comparative Multi-Modal, Multi-Scale Residual Stress Evaluation in SLM 3D-Printed Al-Si-Mg Alloy (RS-300) Parts. Metals 2021, 11, 2064. Statnik, E.S.; Uzun, F.; Lipovskikh, S.A.; Kan, Y.V.; Eleonsky, S.I.; Pisarev, V.S.; Somov, P.A.; Salimon, A.I.; Malakhova, Y.V.; Seferyan, A.G.; Ryabov, D.K.; Korsunsky, A.M. Comparative Multi-Modal, Multi-Scale Residual Stress Evaluation in SLM 3D-Printed Al-Si-Mg Alloy (RS-300) Parts. Metals 2021, 11, 2064.

Abstract

SLM Additive Manufacturing has demonstrated great potential for aerospace applications when structural elements of individual design and/or complex shape need to be promptly supplied. 3D-printable AlSi10Mg (RS-300) alloy is widely used for the fabrication of different structures in aerospace industry. The importance of the evaluation of residual stresses that arise as a result of complex 3D-printing process thermal history is widely discussed in literature, but systematic assessment remains lacking for their magnitude, spatial distribution, and comparative analysis of different evaluation techniques. In this study we report the results of a systematic study of residual stresses in a 3D-printed double tower shaped samples using several approaches: the contour method, blind hole drilling laser speckle interferometry, X-ray diffraction, and Xe pFIB-DIC micro-ring-core milling analysis. We show that a high level of tensile and compressive residual stresses is inherited from SLM 3D-printing and retained for longer than 6 months. The stresses vary over a significant proportion of the material yield stress. All residual stress evaluation techniques considered returned comparable values of residual stresses even regardless of dramatically different dimensional scales from millimeters for the Contour Method down, laser speckle interferometry and XRD and down to small fractions of a mm (70 μm) for Xe pFIB-DIC ring-core drilling. The use of residual stress evaluation is discussed in the context of optimizing the printing strategy to enhance the mechanical performance and long-term durability.

Keywords

SLM; Al-Si-Mg alloy; residual stress; contour measurements; laser speckle-pattern interferometry; Xe pFIB-DIC; FEniCS

Subject

Chemistry and Materials Science, Metals, Alloys and Metallurgy

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.