Preprint
Article

This version is not peer-reviewed.

A Herd Effect Detection Method Based on Text Features

A peer-reviewed article of this preprint also exists.

Submitted:

25 November 2021

Posted:

26 November 2021

You are already at the latest version

Abstract
The herd effect is a common phenomenon in social society. The detection of this phenomenon is of great significance in many tasks based on social network analysis such as recommendation. However, the research on social network and natural language processing seldom focuses on this issue. In this paper, we propose an unsupervised data mining method to detect herding in social networks. Taking shopping review as an example, our algorithm can identify other reviews which are affected by some previous reviews and detect a herd effect chain. From the overall perspective, the cross effects of all views form the herd effect graph. This algorithm can be widely used in various social network analysis methods through graph structure, which provides new useful features for many tasks.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated