Preprint
Article

This version is not peer-reviewed.

Role Played by Edge-Defects in the Optical Properties of Armchair Graphene Nanoribbons

A peer-reviewed article of this preprint also exists.

Submitted:

24 October 2021

Posted:

28 October 2021

You are already at the latest version

Abstract
We explore the implementation of specific optical properties of armchair graphene nanoribbons (AGNRs) through edge-defect manipulation. This technique employs the tight-binding model in conjunction with the calculated absorption spectral function. Modification of the edge states gives rise to the diverse electronic structures with striking changes in the band gap and special flat bands at low energy. The optical-absorption spectra exhibit exotic excitation peaks and they strongly depend on the type and period of the edge extension. Remarkably, there exist the unusual transition channels associated with the flat bands for selected edge-modified systems. We discover the special rule governing how the edge-defect influences the electronic and optical properties in AGNRs. Our theoretical prediction demonstrates an efficient way to manipulate the optical properties of AGNRs. This might be of importance in the search for suitable materials designed to have possible technology applications in nano-optical, plasmonic and optoelectronic devices.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated