Preprint
Article

This version is not peer-reviewed.

Cyber-Physical LPG Debutanizer Distillation Columns: Machine Learning-Based Soft Sensors for Product Quality Monitoring

A peer-reviewed article of this preprint also exists.

Submitted:

23 October 2021

Posted:

25 October 2021

You are already at the latest version

Abstract
Refineries execute a series of interlinked processes, where the product of one unit serves as the input to another process. Potential failures within these processes affect the quality of the end products, operational efficiency, and revenue of the entire refinery. In this context, implementation of a real-time cognitive module, referring to predictive machine learning models, enables to provide equipment state monitoring services and to generate decision-making for equipment operations. In this paper, we propose two machine learning models: 1) to forecast the amount of pentane (C5) content in the final product mixture; 2) to identify if C5 content exceeds the specification thresholds for the final product quality. We validate our approach by using a use case from a real-world refinery. In addition, we develop a visualization to assess which features are considered most important during feature selection, and later by the machine learning models. Finally, we provide insights on the sensor values in the dataset, which help to identify the operational conditions for using such machine learning models.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated