Working Paper Review Version 1 This version is not peer-reviewed

Computed Tomography as a Characterization Tool for Engineered Scaffolds with Biomedical Applications

Version 1 : Received: 13 October 2021 / Approved: 15 October 2021 / Online: 15 October 2021 (12:12:47 CEST)

A peer-reviewed article of this Preprint also exists.

Olăreț, E.; Stancu, I.-C.; Iovu, H.; Serafim, A. Computed Tomography as a Characterization Tool for Engineered Scaffolds with Biomedical Applications. Materials 2021, 14, 6763. Olăreț, E.; Stancu, I.-C.; Iovu, H.; Serafim, A. Computed Tomography as a Characterization Tool for Engineered Scaffolds with Biomedical Applications. Materials 2021, 14, 6763.

Journal reference: Materials 2021, 14, 6763
DOI: 10.3390/ma14226763

Abstract

The ever-growing field of materials with applications in the biomedical field holds great promise regarding the design and fabrication of devices with specific characteristics especially scaffolds with personalized geometry and architecture. The continuous technological development pushes the limits of innovation in obtaining adequate scaffolds and establishing their characteristics and performance. To this end, computed tomography (CT) proved to be a reliable, non-destructive, high-performance machine, enabling visualization and structure analysis at sub-micronic resolutions. CT allows both qualitative and quantitative data of the 3D model, offering an overall image of its specific architectural features as well as reliable numerical data for rigorous analyses. The precise engineering of scaffolds consists in the fabrication of objects with well-defined morphometric parameters (e.g.: shape, porosity, wall thickness), and in their performance validation through thorough control over their behavior (in situ visualization, degradation, new tissue formation, wear, etc.). This review is focused on the use of CT in biomaterial science with the aim of qualitatively and quantitatively assess the scaffolds’ features and in monitoring their behavior following in vivo or in vitro experiments. Furthermore, the paper presents the benefits and limitations regarding the employment of this technique when engineering materials with applications in the biomedical field.

Keywords

computed tomography; 3D imaging; quantitative analysis; accurate morphometric characterization

Subject

MATERIALS SCIENCE, Biomaterials

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.