Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Prospects of Integrated Photovoltaic-Fuel Cell Systems in a Hydrogen Economy: A Comprehensive Review

Version 1 : Received: 27 September 2021 / Approved: 9 October 2021 / Online: 9 October 2021 (13:50:04 CEST)

A peer-reviewed article of this Preprint also exists.

Ogbonnaya, C.; Abeykoon, C.; Nasser, A.; Turan, A.; Ume, C.S. Prospects of Integrated Photovoltaic-Fuel Cell Systems in a Hydrogen Economy: A Comprehensive Review. Energies 2021, 14, 6827. Ogbonnaya, C.; Abeykoon, C.; Nasser, A.; Turan, A.; Ume, C.S. Prospects of Integrated Photovoltaic-Fuel Cell Systems in a Hydrogen Economy: A Comprehensive Review. Energies 2021, 14, 6827.

Abstract

Integrated photovoltaic-fuel cell (IPVFC) systems, amongst other integrated energy generation methodologies are renewable and clean energy technologies that have received diverse research and development attentions over the last few decades due to their potential applications in a hydrogen economy. This article systematically updates the state-of-the-art of IPVFC systems and provides critical insights into the research and development gaps needed to be filled/addressed to advance these systems towards full commercialisation. The design methodologies, renewable energy-based microgrid and off-grid applications, energy management strategies, optimisations and the prospects as self-sustaining power source were covered. IPVFC systems could play an important role in the upcoming hydrogen economy since they depend on solar hydrogen which has almost zero emissions during operation. Highlighted herein are the progresses as well as the technical challenges requiring research efforts to solve to realise numerous potential applications of IPVFC systems such as in unmanned aerial vehicles, hybrid electric vehicles, agricultural applications, telecommunications, desalination, synthesis of ammonia, boats, buildings, and distributed microgrid applications.

Keywords

Photovoltaic-Fuel Cell System; Integrated Energy System; Power generation; Hydrogen energy; Hydrogen economy; zero emissions; Photovoltaics; Fuel cells

Subject

Engineering, Energy and Fuel Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.