Preprint
Article

This version is not peer-reviewed.

Information Theory of Gravity

Submitted:

15 May 2022

Posted:

16 May 2022

Read the latest preprint version here

Abstract
A new model of gravity is presented here similar to the earlier work of Verlinde on Emergent Gravity but without the use of thermodynamic assumptions. The theory does not use the main assumption of Verlinde on the nature of gravity as an entropic force using the First Law of Thermodynamics. Moreover, it does not use the Equipartition Theorem such that there is no need to define a thermal bath enclosed within a holographic screen. Instead of Equipartition Theorem, the theory uses $E=NE_{p}$, for the total energy of a massive object where $E_{p}$ is the Planck Energy while $N$ is the number of Planck Energy to represent the maximum possible density of information that can reside in matter. The theory uses also the Holographic Principle as the basis for an information-theoretic approach to the nature of gravity. It is shown here that gravity emerges whenever there is an updating of the information within a given volume of space by the presence of matter.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated