Preprint
Review

This version is not peer-reviewed.

Androgen Receptor Signaling in Prostate Cancer and Therapeutic Strategies

A peer-reviewed article of this preprint also exists.

Submitted:

28 September 2021

Posted:

01 October 2021

You are already at the latest version

Abstract
Understanding of the molecular mechanisms of prostate cancer has led to development of therapeutic strategies targeting androgen receptor (AR). These androgen-receptor signaling inhibitors (ARSI) include androgen synthesis inhibitor- abiraterone and androgen receptor antagonists- enzalutamide, apalutamide, and darolutamide. Although these medications provide significant improvement in survival among men with prostate cancer, drug resistance develops in nearly all patients with time. This could be through androgen-dependent or androgen-independent mechanisms. Even weaker signals and non-canonical steroid ligands can activate AR in the presence of truncated AR-splice variants, AR overexpression, or activating mutations in AR. AR splice variant, AR-V7 is the most studied among these and is not targeted by available ARSIs. Non-androgen receptor dependent resistance mechanisms are mediated by activation of an alternative signaling pathway when AR is inhibited. DNA repair pathway, PI3K/AKT/mTOR pathway, BRAF-MAPK and Wnt signaling pathway and activation by glucocorticoid receptors can restore downstream signaling in prostate cancer by alternative proteins. Multiple clinical trials are underway exploring therapeutic strategies to overcome these resistance mechanisms.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated