Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Application of Mode-Adaptive Bidirectional Pushover Analysis to an Irregular Reinforced Concrete Building Retrofitted via Base Isolation

Version 1 : Received: 29 September 2021 / Approved: 29 September 2021 / Online: 29 September 2021 (14:26:15 CEST)

A peer-reviewed article of this Preprint also exists.

Fujii, K.; Masuda, T. Application of Mode-Adaptive Bidirectional Pushover Analysis to an Irregular Reinforced Concrete Building Retrofitted via Base Isolation. Appl. Sci. 2021, 11, 9829. Fujii, K.; Masuda, T. Application of Mode-Adaptive Bidirectional Pushover Analysis to an Irregular Reinforced Concrete Building Retrofitted via Base Isolation. Appl. Sci. 2021, 11, 9829.

Abstract

In this article, the main building of the former Uto City Hall, which was severely damaged in the 2016 Kumamoto earthquake, is investigated as a case study for the retrofitting of an irregular Reinforced Concrete building using the base-isolation technique. Its peak response is predicted via mode-adaptive bidirectional pushover analysis (MABPA), which was originally proposed by the authors. In the prediction step of MABPA, the peaks of the first and second modal responses are predicted considering the energy balance during a half cycle of the structural response. The numerical analysis results show that the peak relative displacement can be properly predicted by MABPA. The results also show that the performance of the retrofitted building models is satisfactory for the ground motion considered in this study, including the recorded motions in the 2016 Kumamoto earthquake.

Keywords

seismic isolation; asymmetric building; mode-adaptive bidirectional pushover analysis (MABPA); seismic retrofit; momentary energy input

Subject

Engineering, Civil Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.