Preprint
Article

This version is not peer-reviewed.

A Cloud Computing-Based Modified Symbiotic Organisms Search Algorithm for Ecosystem Sustainability

Submitted:

21 September 2021

Posted:

23 September 2021

You are already at the latest version

Abstract
The search algorithm based on symbiotic organisms’ interactions is a relatively recent bio-inspired algorithm of the swarm intelligence field for solving numerical optimization problems. It is meant to optimize applications based on the simulation of the symbiotic relationship among the distinct species in the ecosystem. The modified SOS algorithm is developed to solve independent task scheduling problems. This paper proposes a modified symbiotic organisms search based scheduling algorithm for efficient mapping of heterogeneous tasks to access cloud resources of different capacities. The significant contribution of this technique is the simplified representation of the algorithm's mutualism process, which uses equity as a measure of relationship characteristics or efficiency of species in the current ecosystem to move to the next generation. These relational characteristics are achieved by replacing the original mutual vector, which uses an arithmetic mean to measure the mutual characteristics with a geometric mean that enhances the survival advantage of two distinct species. The modified symbiotic organisms search algorithm (G_SOS) aimed to minimize the task execution time (Makespan), response, degree of imbalance and cost and improve the convergence speed for an optimal solution in an IaaS cloud. The performances of the proposed technique have been evaluated using a Cladism toolkit simulator, and the solutions are found to be better than the existing standard (SOS) technique and PSO.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated