Preprint
Article

This version is not peer-reviewed.

Multi-Variable Stress Balancing Wireless Method Based on the Status of the Machines in the Cloud Spaces by Neural Networks

Submitted:

09 May 2020

Posted:

10 May 2020

You are already at the latest version

Abstract
Cloud computations are based on the computer networks such as Internet which presents a new pattern to provide, consume and deliver services such as infrastructure, software, ground and other resources using network. The inappropriate timing of assigning loads to the virtual machines in the computational space could lead to unbalance in the system. One of the challenging planning problems. In the cloud data centers is considering both assigning and migration (transfer) of the virtual machines with the ability of reconfiguration and the integrated features of the hosting physical machines. In this article, we introduce an integrated and dynamic timing algorithm based on the Genetic evolution algorithm. The suggested method was evaluated based on these factors and different inputs. Our suggested method is done using Java programming language and cloud-SME simulation. The results show that the execution time and the response time were improved by 12 and 1 percent respectively.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated